首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

To investigate intracranial microvascular images with transceiver radio-frequency (RF) coils at ultra-high field 7 T magnetic resonance imaging (MRI).

Materials and methods

We designed several types of RF coils for the study of 7 T magnetic resonance angiography and analyzed quantitatively each coil's performance in terms of the signal-to-noise ratio (SNR) profiles to evaluate the usefulness of RF coils for microvascular imaging applications. We also obtained the microvascular images with different resolutions and parallel imaging technique.

Results

The overlapped 6-channel (ch) transceiver coil exhibited the highest performance for angiographic imaging. Although other multi-channel coils, such as 4- or 8-ch, were also suitable for fast imaging, these coils performed poorly in homogeneity or SNR for angiographic imaging. Furthermore, the 8-ch coil was poor in SNR at the center of the brain, while it had the highest SNR at the periphery.

Conclusion

The present study has demonstrated that the overlapped 6-ch coil with large-size loop coils provided the best performance for microvascular imaging or angiography with the ultra-high-field 7 T MRI, mainly because of its long penetration depth together with high SNR.  相似文献   

2.
胡洋  王秋良  李毅  朱旭晨  牛超群 《物理学报》2016,65(21):218301-218301
在磁共振成像设备中,为了消除目标区域内的高阶谐波磁场分量,传统方法采用无源匀场,但该方法匀场精度较低,针对性较差,适用于全局匀场,而有源匀场则可以通过优化线圈分布来产生所需要的特定的磁场分布.但是,由于匀场线圈线型的复杂度会随着线圈阶数的增加而增加,难以满足设计需要,因此本文提出了一种用于磁共振成像超导匀场线圈系统的多变量非线性优化设计方法.该方法基于边界元方法,将匀场线圈所产生的磁场与目标磁场之间的偏差作为目标函数,线匝间距、线圈半径等作为约束条件,通过非线性优化算法,得到满足设计要求的线圈分布.通过一个中心磁场为0.5 T的开放式双平面磁共振成像超导轴向匀场线圈的设计案例,说明本方法具有计算效率高、灵活性好的特点.  相似文献   

3.
The clinical use of magnetic resonance imaging (MRI) and multiphase enhanced computed tomography (CT) with the contrast media (Gd-EOB-DTPA) for detecting hepatic malignant and focal nodules prior to operation was examined based on the receiver operating characteristic (ROC) curve. This study included 70 patients with malignant and focal liver nodules who underwent MRI and multiphase CT scans before operation. Both scans for each patient were conducted within 1 month. For MRI, the T 2-weighted image (single shot fast spin echo) and two-dimensional (2-D) and 3-D T 1-gradient magnetic signals were obtained for all patients before administering the contrast media. The 2-D and 3-D T 1-gradient magnetic signals were obtained in the same location after delivering the contrast media. For the CT scans, images of artery phase, portal phase, and delayed phase were obtained at a thickness of 5 mm or less after administering contrast similar to MRI. An ROC curve was used (paired-samples T test, P < 0.05) to evaluate the images. When the analysis was based on the ROC curve, MRI showed high values (P < 0.05) for area under curve (AUC), sensitivity, and specificity in terms of detection rates of small lesions (less than 2 cm and more than 2 cm) compared to multidetector computed tomography (MDCT) (for ≤2 cm, MRI: 0.928, 70, 93%, CT: 0.775, 30, 90%; for ≥2 cm, MRI: 0.744, 80%, 84%; CT: 0.692, 40%, 84%). Gd-EOB-DTPA contrast media-enhanced MRI scanner for detecting malignant and focal liver nodules before operation showed the higher detection rate of lesion and classification of lesion as either benign or malignant than multiphase enhanced MDCT when the ROC curve was used for analysis. Based on these results, we believe that analysis based on the ROC curve will provide guidelines for evaluating malignant and focal hepatic lesions prior to operation.  相似文献   

4.
Hyperpolarized (hp) 83Kr (spin I = 9/2) is a promising gas-phase contrast agent that displays sensitivity to the surface chemistry, surface-to-volume ratio, and surface temperature of the surrounding environment. This proof-of-principle study demonstrates the feasibility of ex vivo hp 83Kr magnetic resonance imaging (MRI) of lungs using natural abundance krypton gas (11.5% 83Kr) and excised, but otherwise intact, rat lungs located within a custom designed ventilation chamber. Experiments comparing the 83Kr MR signal intensity from lungs to that arising from a balloon with no internal structure inflated to the same volume with krypton gas mixture suggest that most of the observed signal originated from the alveoli and not merely the conducting airways. The 83Kr longitudinal relaxation times in the rat lungs ranged from 0.7 to 3.7 s but were reproducible for a given lung. Although the source of these variations was not explored in this work, hp 83Kr T1 differences may ultimately lead to a novel form of MRI contrast in lungs. The currently obtained 1200-fold signal enhancement for hp 83Kr at 9.4 T field strength is found to be 180 times below the theoretical upper limit.  相似文献   

5.

Purpose

Quantitative imaging of the rat skin was performed using magnetic resonance imaging (MRI) at 900 MHz.

Materials and methods

A number of imaging techniques utilized for multiple contrast included magnetization transfer contrast, spin-lattice relaxation constant (T1-weighting), combination of T2-weighting with magnetic field inhomogeneity (T2*-weighting), magnetization transfer weighting and diffusion tensor weighting. These were used to obtain 2D slices and 3D multislice-multiecho images with high magnetic resonance contrast. These 2D and 3D imaging techniques were combined to achieve high-resolution MRI.

Results

Oil–water phantom showed distinct fat-water contrast. The dermis and epidermis, including the stratum corneum remnants, of nude rat skin were distinct due to their proton magnetic resonance as a result of proton interactions with the skin interstitial tissue. Combined details obtained from high-resolution, high-quality ex vivo skin images with different multicontrast characteristics generated better differentiation of skin layers, sublayers and significant correlation (r2=0.4927 for MRI area, r2=0.3068 for histology area; P<.0148) of MR data with co-registered histological areas of the epidermis as well as the hair follicle.

Conclusion

The multiple contrast approach provided a noninvasive ex vivo MRI visualization with semi-quantitative assessment of the major skin structures including the stratum corneum remnants, epidermis, hair, papillary dermis, reticular dermis and hypodermis.  相似文献   

6.
The Magnetic Resonance Imaging (MRI) of human lungs for diagnostic purposes became possible by using nuclear spin hyperpolarized noble gases, such as 3He. One of the methods to polarize 3He is the Metastability Exchange Optical Pumping (MEOP), which up to now has been performed at low pressure of about 1 mbar and in low magnetic field below 0.1 T (standard conditions). The equilibrium nuclear polarization can reach up to 80%, but it is dramatically reduced during the subsequent gas compression to the atmospheric pressure that is necessary for the lungs examination. Further polarization losses occur during the transportation of the gas to the hospital scanner. It was shown recently that up to 50% polarization can be obtained at elevated pressure exceeding 20 mbar, by using magnetic field higher than 0.1 T (nonstandard conditions). Therefore, following the construction of the low-field MEOP polarizer located in the lab, a dedicated portable unit was developed, which uses the magnetic field of the 1.5 T MR medical scanner and works in the continuous-flow regime. The first in Poland MRI images of human lungs in vivo were obtained on the upgraded to 3He resonance frequency Siemens Sonata medical scanner. An evident improvement in the image quality was achieved when using the new technique. The paper shows how spectroscopic measurements of 3He carried out in various experimental conditions led both to useful practical results and to significant progress in understanding fundamental processes taking place during MEOP.  相似文献   

7.
A system for low field imaging of laser-polarized noble gas   总被引:1,自引:0,他引:1  
We describe a device for performing MRI with laser-polarized noble gas at low magnetic fields (<50 G). The system is robust, portable, inexpensive, and provides gas-phase imaging resolution comparable to that of high field clinical instruments. At 20.6 G, we have imaged laser-polarized (3)He (Larmor frequency of 67 kHz) in both sealed glass cells and excised rat lungs, using approximately 0.1 G/cm gradients to achieve approximately 1 mm(2) resolution. In addition, we measured (3)He T(2)(*) times greater than 100 ms in excised rat lungs, which is roughly 20 times longer than typical values observed at high ( approximately 2 T) fields. We include a discussion of the practical considerations for working at low magnetic fields and conclude with evidence of radiation damping in this system.  相似文献   

8.
Applications of low-field magnetic resonance imaging (MRI) systems (<0.3 T) are limited due to the signal-to-noise ratio (SNR) being lower than that provided by systems based on superconductive magnets (≥1.5 T). Therefore, the design of radiofrequency (RF) coils for low-field MRI requires careful consideration as significant gains in SNR can be achieved with the proper design of the RF coil. This article describes an analytical method for the optimization of solenoidal coils. Coil and sample losses are analyzed to provide maximum SNR and optimum B1 field homogeneity. The calculations are performed for solenoidal coils optimized for the human head at 0.2 T, but the method could also be applied to any solenoidal coil for imaging other anatomical regions at low field. Several coils were constructed to compare experimental and theoretical results. A head magnetic resonance image obtained at 0.2 T with the optimum design is presented.  相似文献   

9.
A pure phase-encoding MRI technique, single-point ramped imaging withT1enhancement, SPRITE, is introduced for the purpose of gas phase imaging. The technique utilizes broadband RF pulses and stepped phase encode gradients to produce images, substantially free of artifacts, which are sensitive to the gasT1andT*:2relaxation times. Images may be acquired from gas phase species with transverse relaxation times substantially less than 1 ms. Methane gas images,1H, were acquired in a phantom study. Sulfur hexafluoride,19F, images were acquired from a gas-filled porous coral sample. High porosity regions of the coral are observed in both the MRI image and an X-ray image. Sensitivity and resolution effects due to signal modulation during the time-efficient acquisition are discussed. A method to increase the image sensitivity is discussed, and the predicted improvement is shown through 1D images of the methane gas phantom.  相似文献   

10.
We have prepared iron-oxypnictide SmFeAsO1−xFx by ambient-pressure technique and SmFeAsO1−y by high-pressure technique, and characterized their bulk and local magnetic properties by using SQUID magnetometer and magneto-optical imaging. While the high-pressure samples have densities close to the theoretical value, the ambient-pressure samples have several small voids. Despite these structural differences between the two kinds of samples, they both have superconducting transition temperature above 50 K. In addition, magneto-optical images for both samples show similar kinds of inhomogeneities with large current concentrated in several grains and with small intergranular current. The estimated intragranular currents for both samples are over 105 A/cm2 at low temperatures and low fields.  相似文献   

11.
In this work we show two different glasses-free 3D viewing systems for medical imaging: a stereoscopic system that employs a vertically dispersive holographic screen (VDHS) and a multi-autostereoscopic system, both used to produce 3D MRI/CT images. We describe how to obtain a VDHS in holographic plates optimized for this application, with field of view of 7 cm to each eye and focal length of 25 cm, showing images done with the system. We also describe a multi-autostereoscopic system, presenting how it can generate 3D medical imaging from viewpoints of a MRI or CT image, showing results of a 3D angioresonance image.  相似文献   

12.
PurposeWhen magnetic resonance imaging (MRI) is performed on patients carrying metallic implants, artifacts can disturb the images around the implants, often making it difficult to interpret them appropriately. However, metallic materials are and will be indispensable as raw materials for medical devices because of their electric conductivity, visibility under X-ray fluoroscopy, and other favorable features. What is now desired is to develop a metallic material which causes no artifacts during MRI.Materials and methodsIn the present study, we prepared a single-phase and homogeneous Au-Pt alloys (Au; diamagnetic metal, and Pt; paramagnetic metal) by the processing of thermal treatment. Volume magnetic susceptibility was measured with a SQUID Flux Meter and MRI artifact was evaluated using a 1.5-T scanner.ResultsAfter final thermal treatment, an entirely recrystallized homogeneous organization was noted. The Au-35Pt alloy was shown to have a volume magnetic susceptibility of − 8.8 ppm, causing almost free from artifacts during MRI.ConclusionsWe thus prepared an Au-35Pt alloy which had a magnetic susceptibility very close to that of living tissue and caused much fewer artifacts during MRI. It is promising as a material for spinal cages, intracranial electrodes, cerebral aneurysm embolization coils, markers for MRI and so on.  相似文献   

13.

Purpose

To retrospectively identify apparent diffusion coefficient (ADC) values of pediatric abdominal mass lesions, to determine whether measured ADC of the lesions and signal intensity on diffusion-weighted (DW) images allow discrimination between benign and malignant mass lesions.

Materials and Methods

Approval for this retrospective study was obtained from the institutional review board. Children with abdominal mass lesions, who were examined by DW magnetic resonance imaging (MRI) were included in this study. DW MR images were obtained in the axial plane by using a non breath-hold single-shot spin-echo sequence on a 1.5-T MR scanner. ADCs were calculated for each lesion. ADC values were compared with Mann–Whitney U test. Receiver operating characteristic curve analysis was performed to determine cut-off values for ADC. The results of visual assessment on b800 images and ADC map images were compared with chi-square test.

Results

Thirty-one abdominal mass lesions (16 benign, 15 malignant) in 26 patients (15 girls, 11 boys, ranging from 2 days to 17 years with 6.9 years mean) underwent MRI. Benign lesions had significantly higher ADC values than malignant ones (P<.001). The mean ADCs of malignant lesions were 0.84±1.7×10−3 mm2/s, while the mean ADCs of the benign ones were 2.28±1.00×10−3 mm2/s. With respect to cutoff values of ADC: 1.11×10−3 mm2/s, sensitivity and negative predictive values were 100%, specificity was 78.6% and positive predictive value was 83.3%. For b800 and ADC map images, there were statistically significant differences on visual assessment. All malignant lesions had variable degrees of high signal intensity whereas eight of the 16 benign ones had low signal intensities on b800 images (P<.001). On ADC map images, all malignant lesions were hypointense and most of the benign ones (n=11, 68.7%) were hyperintense (P<.001).

Conclusion

DW imaging can be used for reliable discrimination of benign and malignant pediatric abdominal mass lesions based on considerable differences in the ADC values and signal intensity changes.  相似文献   

14.
Magnetic resonance imaging (MRI) is a useful tool for non-invasive identification and characterization of atherosclerotic plaques in both basic science and clinical practice. To date, the reported studies on in vivo vascular MRI of small animals, such as mice and rats, are mainly performed on high-field micro-MR scanners, which are not always available in many academic institutions and basic research units. This study aimed to explore the possibility of generating high-resolution MR images of the atherosclerotic aortic walls/plaques of mice using a clinical 3.0 T MR scanner with a dedicated solenoid mouse coil. An atherosclerotic mouse model was first generated by feeding 8 ApoE/ mice an atherogenic diet. MR images of the ascending aortas of these mice were then achieved using a three-dimensional black-blood turbo spin-echo sequence (repetition time TR = 4 heart echo time TE = 10 ms). The MRI displayed a clear view of the aortic lumens and the atherosclerotic lesions, which correlated significantly well with subsequent histological confirmations (linear regression analysis, r = 0.73, P = 0.04). This study demonstrated that a clinical 3.0 T MR scanner can be used for high-resolution imaging of mouse atherosclerotic lesions to some extent.  相似文献   

15.

Background  

Predominantly, magnetic resonance imaging (MRI) studies in animal models of Parkinson's disease (PD) have focused on alterations in T2 water 1H relaxation or 1H MR spectroscopy (MRS), whilst potential morphological changes and their relationship to histological or behavioural outcomes have not been appropriately addressed. Therefore, in this study we have utilised MRI to scan in vivo brains from rodents bearing a nigrostriatal lesion induced by intranigral injection of the proteasome inhibitor lactacystin.  相似文献   

16.
There is growing interest in the use of magnetic resonance imaging (MRI) to examine solid materials where the restricted motion of the probed spins leads to broad lines and short T2 values, rendering many interesting systems invisible to conventional 2DFT pulsed imaging methods. In EPR T2 seldom exceeds 0.1 μs and continuous-wave methods are adopted for spectroscopy and imaging. In this paper we demonstrate the use of continuous-wave MRI to obtain 2-dimensional images of short T2 samples. The prototype system can image samples up to 50 mm in diameter by 60 mm long and has been used to image polymers and water penetration in porous media. Typical acquisition times range between 10 and 40 min. Resolution of 1 to 2 mm has been achieved for samples with T2 values ranging from 38 to 750 μs. There is the possibility of producing image contrast that is determined by the material properties of the sample.  相似文献   

17.
倪志鹏  王秋良  严陆光 《物理学报》2013,62(2):20701-020701
本文提出一种用于短腔、自屏蔽磁共振成像超导磁体系统的混合优化设计方法,通过结合线性规划和非线性优化算法,设计出的磁体系统具有建造成本低、结构简单、以及线圈中最高磁场、电流安全裕度和电磁应力可控等优点.首先,通过线性规划算法在欲布置线圈空间范围内建立二维连续网格划分,搜索满足磁场约束条件的网格电流分布图;其次,将电流分布图中的非零电流簇离散成螺线管线圈,通过非线性优化算法计算出满足成像区域磁场均匀度要求、5 Gs杂散场限制、线圈中最高磁场限制、电流安全裕度以及线圈间尺寸间隔等约束条件的线圈结构参数.文中给出一个中心磁场为1.5T自屏蔽磁共振成像超导磁体系统的设计案例,在50 cm球形成像区域所产生的磁场峰峰值不均匀度为10 ppm,线圈最大长度为1.32 m.该设计方法可用于对称、非对称螺线管线圈系统以及开放式双平面线圈系统的磁共振成像磁体系统设计.  相似文献   

18.
The multi-components of T2 relaxation in cartilage and tendon were investigated by microscopic MRI (μMRI) at 13 and 26 μm transverse resolutions. Two imaging protocols were used to quantify T2 relaxation in the specimens, a 5-point sampling and a 60-point sampling. Both multi-exponential and non-negative-least-square (NNLS) fitting methods were used to analyze the μMRI signal. When the imaging voxel size was 6.76 × 10−4 mm3 and within the limit of practical signal-to-noise ratio (SNR) in microscopic imaging experiments, we found that (1) canine tendon has multiple T2 components; (2) bovine nasal cartilage has a single T2 component; and (3) canine articular cartilage has a single T2 component. The T2 profiles from both 5-point and 60-point methods were found to be consistent in articular cartilage. In addition, the depletion of the glycosaminoglycan component in cartilage by the trypsin digestion method was found to result in a 9.81–20.52% increase in T2 relaxation in articular cartilage, depending upon the angle at which the tissue specimen was oriented in the magnetic field.  相似文献   

19.
Transmit Array Spatial Encoding (TRASE) is a novel MRI technique that encodes spatial information by introducing phase gradients in the transmit RF (B1) magnetic field. Since TRASE relies on the use of multiple RF fields (B1 fields with different phase gradients) for k-space traversal, a TRASE pulse sequence requires RF pulses that are produced by switching between the transmit coils (B1 fields). However, interactions among the transmit RF coils can cause un-driven coils to produce unwanted B1 fields that impair the spatial encoding. Therefore, TRASE is sensitive to B1 field perturbations arising from inductive coupling among the RF transmit coils and any B1 field isolation (coil decoupling) technique requires an understanding of the effects of the B1 field interactions. The purpose of this study was to investigate the effects of B1 field coupling using Bloch equation based simulations and to determine the acceptable level of B1 field interactions for 2D TRASE imaging. The simulations show that 2D TRASE MRI (using a 3-coil setup) displays ideal performance for pairwise coupling constant lower than k = 0.01 while having acceptable performance up to k = 0.1. This translates into S12 measurements of range ~(− 50 dB to −30 dB) required for successful 2D TRASE MRI in this study. This result is of crucial importance for designers of practical TRASE transmit array systems.  相似文献   

20.
High sensitivity makes hyperpolarized 3He an attractive signal source for visualizing gas flow with magnetic resonance (MR) imaging. Its rapid Brownian motion, however, can blur observed flow lamina and alter measured diffusion rates when excited nuclei traverse shear-induced velocity gradients during data acquisition. Here, both effects are described analytically, and predicted values for measured transport during laminar flow through a straight, 3.2-mm diameter pipe are validated using two-dimensional (2D) constant-time images of different binary gas mixtures. Results show explicitly how measured transport in narrow conduits is characterized by apparent values that depend on underlying gas dynamics and imaging time. In ventilated rats, this is found to obscure acquired airflow images. Nevertheless, flow splitting at airway branches is still evident and use of 3D vector flow mapping is shown to reveal surprising detail that highlights the correlation between gas dynamics and lung structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号