首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of gas pressure on the structure of carbon nanotubes (CNTs) has been systematically investigated in the chemical vapor deposition process. The yield of CNTs (defined as the weight ratio of CNTs vs. catalyst) increases significantly with the gas pressure, reaches 600% at 600 Torr, then decreases with further increase of gas pressure. At low reacting gas pressure the CNTs have completely hollow cores, whereas at high pressure the CNTs have a bamboo structure. The density of the compartments in the bamboo-structured CNTs increases dramatically with the increase of the gas pressure. This result shows that the structure and yield of carbon nanotubes are strongly affected by the growth gas pressure. Received: 10 May 2001 / Accepted: 10 May 2001 / Published online: 20 June 2001  相似文献   

2.
H. Li  X.Q. Zhang  X.F. Liu 《Physics letters. A》2008,372(41):6288-6293
Five well-ordered nano-ice structures embedded in carbon nanotubes are obtained in this study. These five nano-ice phases all exhibit single walled tubular morphologies, including the pentagon, hexagon ice nanotubes whose structures are quite different from bulk ice. Our simulation results indicate that water molecules tend to rearrange into surface ring structures to reduce the number of free OH groups. The structural behavior of these ice nanotubes inside CNTs subject to axial stress is also investigated. The ice nanotubes tend to be drawn to ice nanorings or ice nanospring during the mechanical stretching. The distribution function exhibits typical order-to-disorder transition of the water network confined in carbon nanotube during the stretching. By analysis, we suggest that it is unlikely that additional water molecules will enter the tubes because of the increased volume available if the tubes are stretched at contact with a water reservoir.  相似文献   

3.
We report a detailed longitudinal and depth profiles of multi-wall carbon nanotubes (CNTs) arrays synthesized using xylene and ferrocene in a floating catalyst reactor. Point to point analyses of the CNTs grown in a “growth window” with CNTs arrays longer than 0.5 mm were performed using optical microscopy, Raman spectroscopy, FESEM, high-resolution TGA/DTA, and TEM techniques. The heights of the CNTs arrays show a maximum at a mid point of the growth window, while a reverse trend of minimum is observed for iron-to-CNTs atomic ratios. The ratio of amorphous carbon to CNTs sharply increases along the growth window and from the bottom to top of CNTs arrays. The CNTs diameter also increases along the growth window, due to deposition of the amorphous carbon, which can be almost removed by temperature programmed oxidation up to around 500 °C. A base growth mechanism, the variations of catalyst content, residence time and temperature profile along the growth window, the adsorption and decomposition of polycyclic aromatic hydrocarbons to amorphous carbon, and a limited diffusion of hydrocarbon species through the arrays covered by excessive amorphous carbon may explain the results.  相似文献   

4.
Homogeneous and stable nanofluids have been produced by suspending well dispersible multi-walled carbon nanotubes (CNTs) into ethylene glycol base fluid. CNT nanofluids have enhanced thermal conductivity and the enhancement ratios increase with the nanotube loading and the temperature. Thermal conductivity enhancement was adjusted by ball milling and cutting the treated CNTs suspended in the nanofluids to relatively straight CNTs with an appropriate length distribution. Our findings indicate that the straightness ratio, aspect ratio, and aggregation have collective influence on the thermal conductivity of CNT nanofluids.  相似文献   

5.
Based on an equivalent resistance-capacitance (RC) network, we investigate theoretically the complex permittivity and microwave absorption properties of carbon nanotubes (CNTs)/polymer composite in the frequency range of 50 MHz-3 GHz using the logarithmic mixing rule. Both the real and imaginary parts of the permittivities of CNTs and polymer are considered in detail. The simulated results show that the real and imaginary permittivities of the composite increase explicitly with increasing volume fraction of CNTs, and the latter is more sensitive. The calculated complex permittivity spectra of the composite are in good agreement with the available experimental data. In addition, a good linear relationship between microwave absorbance and frequency is found.  相似文献   

6.
The influence of oxygen on the development of carbon nanotubes (CNTs) during the annealing process of the surface decomposition method on SiC(000−1) surfaces was investigated. In the case of annealing a SiC substrate under ultra-high vacuum conditions, carbon nanofibers (CNFs) form between the CNT layer and the substrate. However, CNTs form without CNFs by annealing the substrate in an oxygen atmosphere. The mean length of CNTs is longer than those formed without an oxygen atmosphere. From cross-sectional transmission electron microscopy images, it was found that oxygen plays an important role in CNT growth by the surface composition method.  相似文献   

7.
A large-size circular-disc (CD) assembly of carbon nanotubes (CNTs) was formed from injection catalytic chemical vapor deposition (CVD) reactions. The CNT-CD assembly, which has an outer diameter of 830 nm, consists of closely packed rings of double-walled carbon nanotubes (DWNTs), in twenty-eight circles, and stacked in five layers. A structural interpretation suggests that the CNT-CD assembly is coiled from a “tape-like” bundle of DWNTs, whose coiling to form the CNT-CD resembles the rolling up of tape to form a disc. The large CD assembly was formed within milliseconds in the transient gas flow reactions, and the coiling of nanotubes or “nucleation” of the circular assembly was associated with shears generated by gas disturbances in the vapor phase.  相似文献   

8.
欧阳雨  方炎 《光散射学报》2003,15(3):139-142
对不同激发波长下单壁和多壁碳纳米管的激光拉曼光谱进行了比较。发现单壁碳纳米管D峰强度和G峰强度的比值(ID/IG)几乎不随激发光子能量的改变而变化,多壁碳纳米管ID/IG值随着激发光子能量的增加以斜率0 3/eV减小。并对此现象进行了初步的分析。此外,还发现在1064nm激发波长下,单壁和多壁碳纳米管2500-3500cm-1之间拉曼峰的相对强度随着入射激光功率的增加而增加。  相似文献   

9.
We report a quantitative Grazing Incidence Small Angle X‐ray Scattering (GISAXS) study of a dense film of mutually oriented carbon nanotubes (CNTs) grown by a catalytically‐activated DC HF CCVD process after dispersion of metallic catalytic (Co) islands on SiO2/Si(100) substrates. The GISAXS pattern analysis is expanded to non‐correlated surface science systems and is based on CNTs density, characteristic lengths, atomic Co dispersion throughout the CNTs and roughnesses of uncorrelated particles. The results are closely compared to SEM and TEM observations. The GISAXS patterns, even dominated by envelope features of disordered objects, provide significant complementary quantitative data about CNTs films. The results underline that cobalt continuously fills the nanotube in the course of the growth and that the CNTs experience a large tendency toward mutual alignment. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Synthesis of multi-wall carbon nanotubes in a 1473 K furnace using a copper vapor laser (CVL) is reported. The operating parameters of this laser, i.e. a high fluence at the focal point and an extremely high frequency of 10 kHz, distinguished it from common laser sources in the synthesis of CNTs. Therefore, the unexpected experimental findings, the formation of MWNTs instead of the generally reported SWNTs, would be verified by these two notable parameters. Electron microscopy beside Raman spectroscopy illustrates the presence of multi-wall carbon nanotubes in the resulting product.  相似文献   

11.
A carbon-nanotube-atom fixed and activated scheme of non-equilibrium molecular dynamics simulations is put forward to extract the thermal conductivity of carbon nanotubes (CNTs) embedded in solid argon. Though a 6.5% volume fraction of CNTs increases the composite thermal conductivity to about twice as much as that of the pure basal material, the thermal conductivity of CNTs embedded in solids is found to be decreased by 1/8-1/5 with reference to that of pure ones. The decrease of the intrinsic thermal conductivity of the solid-embedded CNTs and the thermal interface resistance are demonstrated to be responsible for the results.  相似文献   

12.
The flexural vibration of the fluid-conveying single-walled carbon nanotube (SWCNT) is derived by the Timoshenko beam model, including rotary inertia and transverse shear deformation. The effects of the flow velocity and the aspect ratio of length to diameter on the vibration frequency and mode shape of the SWCNT are analyzed. Results show that the effects of rotary inertia and transverse shear deformation result in a reduction of the vibration frequencies, especially for higher modes of vibration and short nanotubes. The frequency is also compared with the previous study based on Euler beam model. In addition, if the ratio of length to diameter increased to 60, the influence of the shear deformation and rotary inertia on the mode shape and the resonant frequencies can be neglected. However, the influence is very obvious when the ratio decreased to 20. As the flow velocity of the fluid increases in the vicinity of 2π, the SWCNT reveals the divergence instability. It regains stability when the flow velocity reaches about 9. As the velocity increases further, the SWCNT undergoes a coupled-mode flutter and results in a larger amplitude.  相似文献   

13.
Based on the Mindlin's first-order shear deformation plate theory this paper focuses on the free vibration behavior of functionally graded nanocomposite plates reinforced by aligned and straight single-walled carbon nanotubes (SWCNTs). The material properties of simply supported functionally graded carbon nanotube-reinforced (FGCNTR) plates are assumed to be graded in the thickness direction. The effective material properties at a point are estimated by either the Eshelby-Mori-Tanaka approach or the extended rule of mixture. Two types of symmetric carbon nanotubes (CNTs) volume fraction profiles are presented in this paper. The equations of motion and related boundary conditions are derived using the Hamilton's principle. A semi-analytical solution composed of generalized differential quadrature (GDQ) method, as an efficient and accurate numerical method, and series solution is adopted to solve the equations of motions. The primary contribution of the present work is to provide a comparative study of the natural frequencies obtained by extended rule of mixture and Eshelby-Mori-Tanaka method. The detailed parametric studies are carried out to study the influences various types of the CNTs volume fraction profiles, geometrical parameters and CNTs volume fraction on the free vibration characteristics of FGCNTR plates. The results reveal that the prediction methods of effective material properties have an insignificant influence of the variation of the frequency parameters with the plate aspect ratio and the CNTs volume fraction.  相似文献   

14.
Effect of temperature and aspect ratio on the field emission properties of vertically aligned carbon nanofiber and multiwalled carbon nanotube thin films were studied in detail. Carbon nanofibers and multiwalled carbon nanotube have been synthesized on Si substrates via direct current plasma enhanced chemical vapor deposition technique. Surface morphologies of the films have been studied by a scanning electron microscope, transmission electron microscope and an atomic force microscope. It is found that the threshold field and the emission current density are dependent on the ambient temperature as well as on the aspect ratio of the carbon nanostructure. The threshold field for carbon nanofibers was found to decrease from 5.1 to 2.6 V/μm when the temperature was raised from 300 to 650 K, whereas for MWCNTs it was found to decrease from 4.0 to 1.4 V/μm. This dependence was due to the change in work function of the nanofibers and nanotubes with temperature. The field enhancement factor, current density and the dependence of the effective work function with temperature and with aspect ratio were calculated and we have tried to explain the emission mechanism.  相似文献   

15.
This Letter develops a model that analyzes the resonant frequency of the chiral single-walled carbon nanotubes (SWCNTs) subjected to a thermal vibration by using Timoshenko beam model, including the effect of rotary inertia and shear deformation. The analytical solution is derived and the frequency equation is obtained. The results based on the beam model show that the frequency increases with decreasing the nanotube aspect ratio of length to diameter. In addition, the frequency obtained by Timoshenko beam model is lower than that calculated by Euler beam model. As the nanotube aspect ratio of length to diameter decreased, the discrepancy is more obvious. Furthermore, as the effect of thermal vibration increases, the frequency for chiral SWCNTs decreases.  相似文献   

16.
The effects of H2 plasma pretreatment on the growth of vertically aligned carbon nanotubes (CNTs) by varying the flow rate of the precursor gas mixture during microwave plasma chemical vapor deposition (MPCVD) have been investigated in this study. Gas mixture of H2 and CH4 with a ratio of 9:1 was used as the precursor for synthesizing CNTs on Ni-coated TiN/Si(1 0 0) substrates. The structure and composition of Ni catalyst nanoparticles were investigated by using scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (XTEM). Results indicated that, by manipulating the morphology and density of the Ni catalyst nanoparticles via changing the flow rate of the precursor gas mixture, the vertically aligned CNTs could be effectively controlled. The Raman results also indicated that the intensity ratio of the G and D bands (ID/IG) is decreased with increasing gas flow rate. TEM results suggest H2 plasma pretreatment can effectively reduce the amorphous carbon and carbonaceous particles and, thus, is playing a crucial role in modifying the obtained CNTs structures.  相似文献   

17.
The field emission properties of electrophoretic deposition(EPD) carbon nanotubes (CNTs) film have been improved by depositing CNTs onto the titanium (Ti)-coated Si substrate, followed by vacuum annealing at 900 °C for 2 h, and the enhanced emission mechanism has been studied using X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectroscopy. Field emission measurements showed that the threshold electric field was decreased and the emission current stability was improved compared to that of EPD CNTs film on bare Si substrate. XRD and Raman spectroscopy investigations revealed that vacuum annealing treatment not only decreased the structural defects of CNTs but made a titanium carbide interfacial layer formed between CNTs and substrate. The field emission enhancement could be attributed to the improved graphitization of CNTs and the improved contact properties between CNTs and substrate including electrical conductivity and adhesive strength due to the formed conductive titanium carbide.  相似文献   

18.
Carbon nanotubes (CNTs) have been grown directly on a Si substrate without a diffusion barrier in ethanol diffusion flame using Ni as the catalyst after a photoresist-assisted catalyst annealing process. The growth mechanism of as-synthesized CNTs is confirmed by scanning electron microscopy, high resolution transmission-electron microscopy and energy-dispersive spectroscopy. The photoresist is the key for the formation of active catalyst particles during annealing process, which then result in the growth of CNTs. The catalyst annealing temperature has been found to affect the morphologies and field electron emission properties of CNTs significantly. The field emission properties of as-grown CNTs are investigated with a diode structure and the obtained CNTs exhibit enhanced characteristics. This technique will be applicable to a low-cost fabrication process of electron-emitter arrays.  相似文献   

19.
Electronic transport properties of superlattice-carbon nanotubes (SCNTs) attached to semi-infinite clean metallic carbon nanotube (CNT) leads are investigated in the framework of a simple model based on mode (momentum)-space within the tight-binding approximation. This model reduces the numerical calculation time and enables us to use the transfer matrix method to investigate transport in an SCNT. We calculate the localization length and density of states (DOS) for various strengths of boron defect. Our numerical results indicate that the localization length decreases with increasing boron concentration, showing the tendency of the system towards the insulating behavior. Also, we observe a nearly stepwise dependence of the localization length on energy at small boron concentration. By controlling the layered boron concentration, the system can be tuned to yield either localized or extended states. These calculations can be generalized to the magnetic defects embedded in the device, which can act as a spin-filter. Our results can serve as a base for developments in designing nano-electronic devices.  相似文献   

20.
Carbon nanotubes (CNTs) were modified by depositing a thin layer of titanium film on the surface using magnetron sputtering method, followed by vacuum annealing at 900 °C for 2 h. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) confirmed that the as-deposited thin titanium film reacted with carbon atoms to form titanium carbide after annealing. The experiment results show that the thickness of sputter-deposited titanium film has significant effect on the field emission J-E characteristic of modified CNTs film. The titanium carbide-modified CNTs film obtained by controlling the titanium sputtering time to 2 min showed an improved field emission characteristics with a significant reduction in the turn-on electric field and an obvious increase in the emission current density as well as an improvement in emission stability. The improvement of field emission characteristics achieved is attributed to the low work function and good resistance to ion bombardment of titanium carbide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号