首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Ionic amphiphilic dextran derivatives were synthesized by the attachment of sodium sulfopropyl and phenoxy groups on the native polysaccharide. A family of dextran derivatives was thus obtained with varying hydrophobic content and charge density in the polymer chains. The surface-active properties of polymers were studied at the air-water and dodecane-water interfaces using dynamic surface/interfacial tension measurements. The adsorption was shown to begin in a diffusion-limited regime at low polymer concentrations, that is to say, with the diffusion of macromolecules in the bulk solution. In contrast, at long times the interfacial adsorption is limited by interfacial phenomena: adsorption kinetics or transfer into the adsorbed layer. A semiempirical equation developed by Filippov was shown to correctly fit the experimental curves over the whole time range. The presence of ionic groups in the chains strongly lowers the adsorption kinetics. This effect can be interpreted by electrostatic interactions between the free molecules and the already adsorbed ones. The adsorption kinetics at air-water and oil-water interfaces are compared.  相似文献   

2.
Graphite and related sp2 carbons are ubiquitous electrode materials with particular promise for use in e.g., energy storage and desalination devices, but very little is known about the properties of the carbon–electrolyte double layer at technologically relevant concentrations. Here, the (electrified) graphite–NaCl(aq) interface was examined using constant chemical potential molecular dynamics (CμMD) simulations; this approach avoids ion depletion (due to surface adsorption) and maintains a constant concentration, electroneutral bulk solution beyond the surface. Specific Na+ adsorption at the graphite basal surface causes charging of the interface in the absence of an applied potential. At moderate bulk concentrations, this leads to accumulation of counter-ions in a diffuse layer to balance the effective surface charge, consistent with established models of the electrical double layer. Beyond ∼0.6 M, however, a combination of over-screening and ion crowding in the double layer results in alternating compact layers of charge density perpendicular to the interface. The transition to this regime is marked by an increasing double layer size and anomalous negative shifts to the potential of zero charge with incremental changes to the bulk concentration. Our observations are supported by changes to the position of the differential capacitance minimum measured by electrochemical impedance spectroscopy, and are explained in terms of the screening behaviour and asymmetric ion adsorption. Furthermore, a striking level of agreement between the differential capacitance from solution evaluated in simulations and measured in experiments allows us to critically assess electrochemical capacitance measurements which have previously been considered to report simply on the density of states of the graphite material at the potential of zero charge. Our work shows that the solution side of the double layer provides the more dominant contribution to the overall measured capacitance. Finally, ion crowding at the highest concentrations (beyond ∼5 M) leads to the formation of liquid-like NaCl clusters confined to highly non-ideal regions of the double layer, where ion diffusion is up to five times slower than in the bulk. The implications of changes to the speciation of ions on reactive events in the double layer are discussed.

CμMD reveals multi-layer electrolyte screening in the double layer beyond 0.6 M, which affects ion activities, speciation and mobility; asymmetric charge screening explains concentration dependent changes to electrochemical properties.  相似文献   

3.
A novel chelating polymeric material was synthesized by chemical anchoring of N,N′-dimethyl-N,N′-dibutyl malonamide (DMDBMA) with chloromethylated polystyrene-divinyl benzene polymer. The polymeric material thus prepared was characterized by 13C NMR, FT-IR spectroscopy and CHN elemental analysis. The fabricated polymeric material exhibited superior binding for hexa-valent and tetra-valent metal ions such as U(VI) and Th(IV). Various physico-chemical properties of the functionalized polymer like phase adsorption kinetics, metal sorption mechanism and metal sorption capacity was studied in the static method. Adsorption kinetics studies show that <20 min was sufficient for >99.99% adsorption of Th(IV) and U(VI). The kinetics for adsorption of U(VI) and Th(IV) was found to follow the first order Lagergren rate kinetics. Adsorption of U(VI) on the malonamide functionalized polymer followed the Langmuir adsorption isotherm. The Langmuir monolayer adsorption phenomenon was also confirmed by the theoretical approach calculated based on the adsorption kinetics. The metal sorption capacities for uranium and thorium were found to be 18.78 ± 1.53 mg and 15.74 ± 1.59 mg/g of the chelating polymer at 3 M HNO3, respectively.  相似文献   

4.
The effect of deaeration on the adsorption of a mixture of cetyltrimethylammonium bromide and cetyldimethylbenzylammonium chloride at the mercury/electrolyte interface solution is studied using capacitance measurements focusing mainly at very low temperatures. Isochronous capacitance vs potential curves reconstructed from capacitance time curves show that the deaeration depends on the type of inert gas used as well as the deaeration process. The deaeration changes mainly the kinetics of the change of the capacitance with time. In cases where a condensed film is formed, the equilibrium capacitance value does not change with deaeration, indicating that the organization of the surfactants at the interface is not connected with the deaeration. The effect is attributed to the removal of dissolved gases from water.  相似文献   

5.
The adsorption of 1,6-hexanediol at the Hg—aqueous solution interface was investigated. The differential capacity, interfacial tension and the zero charge potential were measured. Analysis of the results were carried out both at constant charge and at constant potential. Good congruence with respect to the potential and noncongruence with respect to the charge was found. It was shown that the hexanediol molecules orientate flat against the surface and the adsorption could be described equally well by the Frumkin or Flory—Huggins isotherms. Adsorption parameters for the hexanediol were compared with the literature data on adsorption of ethanediol and 1,4-butanediol. It was concluded that adsorption of diols does not affect the thickness of the inner layer. Thus, this adsorption is well described by the model of two parallel capacitors.  相似文献   

6.
The adsorption and the changes in the interfacial composition of octanoic acid at the mercury/electrolyte interface was studied by measuring the differential capacitance at different concentrations of the supporting electrolyte, at various supporting electrolyte systems and at various temperatures. The adsorption was followed by means of capacity-potential curves in the short-term region and capacity-time transients in the long-term region at selected potentials, in all the potential ranges. A decrease of the capacitance with time was observed in most cases, followed either by a constant capacitance value or by its increase. In the short-term region, anion-surfactant complexes are formed, where the anions act as bridges between the perpendicularly oriented surfactant molecules. The larger is the negative charge of the anion, the more negative will be the charge of the anion-surfactant complex leading to a shift of the potential of maximal adsorption to more positive values. The formation of metastable condensed films is best when the hydration of the anion and its size are not too large. In the long-term region the observed increase of the capacity with time can be explained as an exchange of the metastable condensed film by a hemimicellar surface state. Here, the anions act as cores of the hemimicelles, and the hydrophilic acid groups of the amphiphiles contact the solution. Two contrary effects determine the formation of the hemimicelles. The greater is the specific adsorption of the anions, the larger is the formation of hemimicelles and the increase of the capacity. With an increase in the ability of the anions to break the water structure (lyotropic or Hofmeister series), the formation of hemimicelles will be decreased. Copyright 2000 Academic Press.  相似文献   

7.
Extended viologens represent a group of organic molecules intended to be used as molecular wires in molecular electronic devices. Adsorption properties of a novel series of extended viologen molecules were studied at the mercury electrode|electrolyte interface. These compounds form compact monolayers around the potential of zero charge with a constant differential capacitance value of 2.5 ± 0.2 μF cm(-2) independent of temperature, length of the molecule, and its bulk concentration. At more negative potentials their reduction in the adsorbed state takes place. We showed that the adsorption process is diffusion controlled and time needed to fully cover the electrode surface is independent of the electrode potential. A modified Koryta equation was employed for the calculation of the surface concentration of the adsorbates leading to the value of 5.3 × 10(-11) mol cm(-2) for the shortest wire and to 1.6 × 10(-11) mol cm(-2) for the longest one. Based on the space filling model and the differential capacitance value in the compact film region, it was postulated that these molecules lay flat on the electrode surface.  相似文献   

8.
9.
Constituents of egg yolk are key ingredients of many food emulsions. They contribute to create an interfacial film between oil and water, which determines largely the characteristics of the emulsions. Food emulsions prepared with yolk are made at various pHs. However, the effect of pH on the adsorption of yolk constituents and on the composition of the interfacial film is not known. The present study deals with the influence of pH (3, 6 and 9), on protein interface concentration and composition, change in interfacial tension, and oil droplet diameter, of emulsions made with yolk. Emulsions were prepared as follows: 0.5% w/v of yolk; oil volume fraction: 0.375, homogenisation rate: 20 000 rpm/2 min. pH 6 provided the best conditions to prepare emulsion with yolk. The average diameter of oil droplets was lower at pH 6 (8.5 μm) than at pH 3 (11.8 μm) and pH 9 (13.5 μm). The interfacial protein concentration was higher at pH 6 (1.7 mg m−2) than at pH 3 and pH 9 (0.5 mg m−2). At pH 6, all the proteins of yolk, except phosvitin, were adsorbed at the interface and the interfacial tension at steady-state was lower (10 mN m−1) than at pH 3 (15 mN m−1) and pH 9 (30 mN m−1). At pH 3, proteins at the interface are mainly phosvitin, and, at pH 9, some apoproteins of LDL and HDL. The pH modulates the composition of yolk proteins at the interface, mainly by modifying the net charge of the proteins causing their repulsion or dimerisation.  相似文献   

10.
Adsorption of purified apo-ovotransferrin at the air-water interface was studied by ellipsometry, surface tension, polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and shear elastic constant measurements. No significant difference was observed between pH 6.5 and 8.0 as regards the final value of surface concentration and surface pressure. However at low concentration, a weak barrier to adsorption is evidenced at pH 6.5 and confirmed by PM-IRRAS measurements. At a pH where the protein net charge is negative (pH 8.0), the behavior of ovotransferrin at the air-water interface is more influenced by charge effects rather than bulk concentration effects. At this pH, the interface exhibits a low shear elastic constant and a spectral signature not usual for globular proteins.  相似文献   

11.
The electrochemical impedance spectroscopy technique was used to investigate the interfacial behavior of beta-lactoglobulin at an austenitic stainless steel surface over the temperature range 299 to 343 K at an open circuit potential. The electrode/electrolyte interface and corresponding surface processes were successfully modeled by applying an equivalent-electrical-circuit approach. A charge-transfer resistance value was found to be very sensitive to the amount of adsorbed protein (surface concentration), thus indicating that the adsorption of the protein (i) was accompanied by the transfer of the charge, via chemisorption, and (ii) influenced the mechanism and kinetics of the corrosion reaction. This was also apparent from the large decrease in the corrosion activation energy (16 kJ mol(-1)) caused by the adsorption of the protein. Adsorption of beta-lactoglobulin onto the stainless steel surface at an open circuit potential resulted in a unimodal isotherm at all the temperatures studied and the adsorption process was described with a Langmuir adsorption isotherm. From the calculated Gibbs free energies of adsorption it was confirmed that beta-lactoglobulin molecules adsorb strongly onto the stainless steel surface. The enthalpy and entropy values indicated that the molecule partially unfolds at the surface upon adsorption. The adsorption process was found to be entirely governed by the change in entropy. Copyright 2000 Academic Press.  相似文献   

12.
Antigen I/II can be found on streptococcal cell surfaces and is involved in their interaction with salivary proteins. In this paper, we determine the adsorption enthalpies of salivary proteins to Streptococcus mutans LT11 and S. mutans IB03987 with and without antigen I/II, respectively, using isothermal titration calorimetry. In addition, protein adsorption to the cell surfaces was determined spectrophotometrically. S. mutans LT11 with antigen I/II, yielded a much higher, exothermic adsorption enthalpy at pH 6.8 (ranging from −2073 × 10−9 to −31707 × 10−9 μJ per bacterium) when mixed with saliva than did S. mutans IB03987 (−165 × 10−9 to −1107 × 10−9 μJ per bacterium) at all bacterial concentrations studied (5 × 109, 5 × 108, and 5 × 107 ml−1), largest effects per bacterium being observed for the lowest concentration. However, the enthalpy of salivary protein adsorption to S. mutans LT11 became smaller at pH 5.8. Adsorption isotherms for the S. mutans LT11 showed considerable protein adsorption at pH 6.8 (1.2–2.1 mg/m2), that decreased only slightly at pH 5.8 (1.1–1.6 mg/m2), with the largest amount adsorbed at the lowest bacterial concentration. This suggests that the protein(s) in the saliva with the strongest affinity for antigen I/II is (are) readily depleted from saliva. In conclusion, antigen I/II surface proteins on S. mutans play a determinant role in adsorption of salivary proteins through the creation of enthalpically favorable adsorption sites.  相似文献   

13.
The adsorption behavior and the phase transition of alkanol and fluoroalkanol at the electrified mercury/aqueous solution interface were investigated by the interfacial tension measurements and the thermodynamic analysis. In the alkanol system, it is found that the phase transitions in low interfacial densities occur: the ones from the zero adsorption to the gaseous or the expanded state and the gaseous to the expanded state at the electrified interface depending on the electrostatic nature as well as the concentration in the bulk phase. These phase transitions were verified by the thermodynamic equations derived by the assumption of coexistence of two phases at the electrified interface. Furthermore the distribution of ionic species in the interfacial region is discussed on the basis of dependence of the interfacial charge density of solution phase on an applied potential. Fluoroalkanol, on the other hand, was practically not adsorbed at the electrified interface within this experimental condition. The zero adsorption of fluoroalkanol molecules suggests the driving force of the adsorption may be the interaction hydrophobic group of alcohol molecule and mercury.  相似文献   

14.
Charge density and space charge layer capacitance of semiconductor/electrolyte interface are determined by computational method in the case of crystalline, polycrystalline and amorphous semiconductors with multiple deep energetic levels. These determinations are performed as a function of the difference of potential between the potential in the bulk of the electrode and the potential at a point x and especially at x = 0 which correspond to the potential at the SC/electrolyte interface. The investigation of the results allows proposing new and original relations describing the charge density for polycrystalline and amorphous semiconductors. The variation of the charge density is manifested by the existence of different regions where the ionization phenomenon of the donor states relative to the discrete and continuous levels is exhibited. The space charge layer capacitance determined from the charge density using Poisson’s equation is also analyzed as a function of the potential difference through the space charge layer for the different parameters characterizing the discrete and continuous levels in the case of the different semiconductors. For amorphous semiconductors, the charge density and the space charge layer capacitance are analyzed for two models of the density of states. The representation of the inverse square capacity shows a linear variation where straight lines with different slopes appear in low and high potential range indicating Mott-Schottky behaviour.  相似文献   

15.
Adsorption of benzoic acid at the mercury electrode was studied in a wide pH range. The adsorption isotherms of benzoic acid from electrocapillary and capacity measurements were calculated. From the dependence of capacitance and potential of zero charge on pH the pKel of benzoic acid was determined.  相似文献   

16.
The adsorption kinetics of some local anesthetics, like dibucaine and tetracaine, and of stearic acid from bulk solutions at the oil/water interface was studied by using the pendent drop and ring methods. The anesthetics were dissolved in aqueous solutions (pH 2), and the fatty acid was dissolved in benzene, each biocompound at several different concentrations in bulk solutions. Kinetic equations for Langmuir mechanism of adsorption at oil/water interface were tested. The kinetic analysis shows that Langmuir kinetic approach describes the dynamic interfacial pressures within the limits of the experimental errors over a wide range of time and for different surfactant concentrations in bulk solutions. It is also concluded that this approach allows the calculation of the ratio of the adsorption and desorption rate constants of these biocompounds at the oil/water interface. Obtained results are in substantial agreement with earlier reported data for the surfactant adsorption as, well as with their molecular structure.  相似文献   

17.
Over the last decades numerous studies on the interfacial rheological response of protein adsorption layers have been published. The comparison of these studies and the retrieval of a common parameter to compare protein interfacial activity are hampered by the fact that different boundary conditions (e.g. physico-chemical, instrumental, interfacial) were used. In the present work we review previous studies and attempt a unifying approach for the comparison between bulk protein properties and their adsorption films. Among many common food grade proteins we chose bovine serum albumin, β-lactoglobulin and lysozyme for their difference in thermodynamic stability and studied their adsorption at the air/water and limonene/water interface. In order to achieve this we have i) systematically analyzed protein adsorption kinetics in terms of surface pressure rise using a drop profile analysis tensiometer and ii) we addressed the interfacial layer properties under shear stress using an interfacial shear rheometer under the same experimental conditions. We could show that thermodynamically less stable proteins adsorb generally faster and yield films with higher shear rheological properties at air/water interface. The same proteins showed an analog behavior when adsorbing at the limonene/water interface but at slower rates.  相似文献   

18.
Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been employed to study the interfacial adsorption kinetics of coumarin-tagged macromolecules onto a range of functionalized planar surfaces. Such studies are valuable in designing polymers for complex systems where the degree of interaction between the polymer and surface needs to be tailored. Three tagged synthetic polymers with different functionalities are examined: poly(acrylic acid) (PAA), poly(3-sulfopropyl methacrylate, potassium salt) (PSPMA), and a mannose-modified glycopolymer. Adsorption transients at the silica/water interface are found to be characteristic for each polymer, and kinetics are deduced from the initial rates. The chemistry of the adsorption interfaces has been varied by, first, manipulation of silica surface chemistry via the bulk pH, followed by surfaces modified by poly(L-glutamic acid) (PGA) and cellulose, giving five chemically different surfaces. Complementary atomic force microscopy (AFM) imaging has been used for additional surface characterization of adsorbed layers and functionalized interfaces to allow adsorption rates to be interpreted more fully. Adsorption rates for PSPMA and the glycopolymer are seen to be highly surface sensitive, with significantly higher rates on cellulose-modified surfaces, whereas PAA shows a much smaller rate dependence on the nature of the adsorption surface.  相似文献   

19.
The dependence of the differential capacitance (C) of the electrode double layer of a hanging mercury drop electrode in bis (2-ethylhexyl) sodium sulfosuccinate (AOT) solutions on electrode potential (E) and time is measured using three-dimensional phase sensitive ac voltammetry. This methodology, possessing a very wide time window that permits a detailed study of the adsorption phenomena, is based on the reconstruction of C vs E curves, sampled after many phase-sensitive ac chronoamperometric experiments. The shape of these curves allows an estimation of the structure of the layer of AOT molecules absorbed at the electrode surface. AOT molecules form micelles in bulk solutions and they also associate in the charged interface under the strong influence of the electric field into surface aggregates which depend on their concentration and applied potential. The presence of AOT micelles in the bulk solution can be linked with the appearance of a surface film at potentials more negative than those corresponding to a condensed film linked with a capacitance value slightly higher than that normally attributed to a compact layer. The whole phenomenon is proved to be very dependant upon time.  相似文献   

20.
Oscillatory potential and difference interfacial tension variation can be observed at an oil-water interface containing charge species when the conditions are such that hydrodynamic instabilities can occur. We propose a mechanism based on an experimental study accountable for the relaxation-type oscillations observed. It involves the coupling of a chemical reaction occurring in the bulk in the vicinity of the interface with an interfacial transfer by diffusion and adsorption-desorption processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号