首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purely organic materials with visible light excitable fluorescence afterglow are promising for applications. Herein, fluorescence afterglow with various intensity and duration was observed on fluorescent dyes once being dispersed in polymer matrix, thanks to the slow reverse intersystem crossing rate (kRISC) and long delayed fluorescence lifetime (τDF) derived from the coplanar and rigid chemical structure of the dyes. To verify the mechanism, different polymers were used to tune singlet-triplet splitting energy based on solvent effect. And commercial acriflavine (Acf) film showed blue shifted fluorescence compared to purified one, with slower kRISC (≈100 s−1) and longer τDF (0.6 s). Via energy transfer from Acf to rhodamine B, the afterglow color was further regulated, with the largest fluorescence quantum yield of 42.4 %. It was demonstrated that the materials worked on color tunable light sources, and low-cost ($2 for 50 000 labels) anti-counterfeit labels recognized by white light.  相似文献   

2.
Abstract— Phase-fluorometer measurements of the fluorescence lifetime, τ, from chlorophyll in Chlorella, Bishop's 8 and 11 Scenedesmus mutants, sugarbeet leaf and chloroplast fragments demonstrate that: τ is independent of modulation frequency at 27 and 14 mc. in the experimental-wavelength range from 650 to 735 nm (with blue or blue-green excitation); with Chlorelfa and chloroplast fragments τ rises hyperbolically with intensity to τmax about 2 nsec and 0·7 nsec respectively; DCMU poisoned Chlorella and sugarbeet leaf as well as the mutants have τ values near 2 nsec; the lifetime-incident intensity relationship for Chlorella and chloroplast fragments is quantitatively similar to the incident-intensity dependence of fluorescence yield and oxygen evolution and thus supports the hypothesis that these three measuring variables are controlled by the concentration of ‘open’ trapping systems; τ is independent of emission wave-length to suggest that fluorescence is dominated by a single chlorophyll species. The reaction velocity-lifetime correlation indicates that fluorescence behavior is directly controlled by system II.  相似文献   

3.
The temperature dependence of the fluorescence quantum yield φf, the fluorescence lifetime τf, and the oscillator strength f(S0→S1) of isoquinoline in solution has been measured between room temperature and 77 K. Following an Arrhenius type expression, φf in ethanol increases from 0.012±0.002 at 295 K to 0.61±0.03 at 77 K paralleled by an increase of τf from 0.25±0.10 ns to 9.0±0.2 ns. Over the same temperature range f(S0→S1) and the radiative fluorescence lifetime remain constant. By analyzing the temperature dependent data, it is shown that a spin-allowed internal conversion process with an activation energy of ~1500 cm?1 is responsible for the observed temperature effect. A mechanism is proposed based upon a thermally activated depopulation of the S1(ππ*) state of isoquinoline via a slightly higher state, presumably the S2(ππ*) singlet state. An extremenly fast process involving the dissociation of the hydrogen bond deactivates this latter state, by possing S1.  相似文献   

4.
We report the spectroscopic properties of fluorescein, x-rhodamine, tetramethyl-rhodamine, attached to single strand, duplex DNA, and to the digestion products by DNAse I. The properties reported include: molar absorptivity, quantum yield, absorbance and fluorescence spectra, fluorescence lifetime, intrinsic lifetime (τ0), static quenching (S) and the Förster critical distances (R0) between fluorescein and x-rhodamine or tetramethyl-rhodamine (acceptors). These spectroscopic properties depend strongly on the local dye environment. Fluorescein was studied: (1) attached to biotin (BF), (2) BF bound to avidin; and attached to two positions in DNA. X-rhodamine and tetramethyl-rhodamine were studied as free dyes and attached at the 5′-end of DNA. We propose a general method to determine the molar absorptivity and τ0 of a dye attached to DNA based on the reaction of a biotinylated and dye-labeled oligomer with standardized avidin. The molar absorptivity of a second dye attached to a DNA duplex can be obtained by comparing spectra of doubly and singly labeled sequences. S, arising from dye–DNA interactions can then be determined. R0 for free and attached dyes showed differences from 1.1 to 4.2 Å. We present evidence for the direct interaction of dyes attached to the termini of various single-stranded DNA sequences.  相似文献   

5.
Abstract— Light-induced changes in the yield of bacteriochlorophyll fluorescence have been measured in cells and chromatophores of photosynthetic bacteria, and coordinated with light-induced absorbancy changes. Comparisons were drawn during transitions between dark and light steady states and also between steady states established at different light intensities. Aerobic cell suspensions of Rhodospirillum rubrum, Rhodopseudomonas spheroides, Chromatium and Rhodopseudomonas sp. NHTC 133 showed a strict correspondence between changes in the fluorescence yield and the bleaching of P870 (P985 in Rps. sp. NHTC 133), as reported by Vredenberg and Duysens for R. rubrum cells. The relationship shows that singlet excitation energy in bacteriochlorophyll is quenched by P870 at a rate proportional to the concentration of unbleached P870. This implies that the photosynthetic units are not independent with respect to energy transfer. In anaerobic cell suspensions the change in fluorescence did not follow the bleaching of P870 in the manner described by Vredenberg and Duysens. Here a change in fluorescence may have resulted from the reduction of a primary photochemical electron acceptor as well as from the oxidation (bleaching) of P870. In chromatophore preparations there were further deviations from the Vredenberg and Duysens relationship which could be attributed to changes in the rate constants for quenching of singlet excitation energy. Finally there was a light-induced increase in the fluorescence yield which was related to a band shift of bacteriochlorophyll and not to the bleaching of P870. Aerobic cell suspensions presented a limiting case in which these complications were absent. No change in the fluorescence was associated uniquely with the oxidation of cytochrome or band shifts of carotenoid pigments. These results, when coordinated with earlier findings about the fluorescence of bacteriochlorophyll and P870, indicate that the singlet excitation quantum is the only energy carrier linking the absorption of light with the initiation of photochemistry in bacterial photosynthesis.  相似文献   

6.
In this paper we present the results of an experimental study of intermolecular electronic energy transfer (EET) from the short-lived Second excited singlet state of rhodamine 6G (R6G) to the ground state of 2,5-bis [5′-tert-butyl-2-benzoxazolyl] thiophene (BBOT). The S2 state of the donor was excited by sequential, time-delayed, two-photon excitation (STDTPE) utilizing the second harmonic and the first harmonic of a mode-locked Nd3+: glass laser, while the EET process was interrogated by monitoring the enhancement of the S1 → S0 fluorescence of BBOT. The enhancement of the fluorescence intensity of BBOT was found to be linear in the energies of the two exciting pulses, and linear in the concentration of the energy acceptor (over the BBOT concentration range of (0.3–7) × 10?5 M), which is in accord with the predictions of the Forster—Dexter mechanism for resonant EET from an ultrashort-lived donor state at low acceptor concentrations. Quantitative measurements of the S2 → S0 fluorescence yield in R6G solution directly excited by STDTPE and of the S1 → S0 fluorescence of BBOT from R6G + BBOT solutions resulting from EET led to the values of YD(S2 → S0) = (2.1 ± 0.5) × 10?6 for the emission quantum yield of the S2 state of R6G and τrD(S2) ≈ 3 × 10?14 s for the lifetime of the metastable S2 state of this molecule.  相似文献   

7.
Single-photon timing measurements on flowing samples of Chlorella vulgaris and Chlamydomonas reinhardtii at low excitation intensities at room temperature indicate two main kinetic components of the fluorescence at open reaction centers (F0) of photosystem II with lifetimes of approx. 130 and 500 ps and relative yields of about 30 and 70%. Closing the reaction centers progressively by preincubation of the algae with increasing concentrations of 3-(3′,4′-dichlorophenyl)-l,l-dimethylurea (DCMU) and hydroxylamine gave rise to a slow component with a lifetime increasing from 1.4 to 2.2 ns (Fmax) The yield of the slow component increased to 65-68% of the total fluorescence yield in parallel to a decrease in the yield of the fast component to a value close to zero at the fmax-level. The 130 ps lifetime of the fast component remained unchanged. The middle component showed an increase of its lifetime from 500 to 1100 ps and of its yield by a factor of 1.5. Spacing of the ps laser pulses by 12 μs allowed us to resolve a new long-lived fluorescence component of very small amplitude which is ascribed to a small amount of chlorophyll not connected to functional antennae. The opposite dependence of the yield of the fast and the slow component on the state of the reaction centers at almost constant lifetimes is consistent with a mechanism of energy conversion in largely separately functioning photosystem II units. Yields and lifetimes of these two components are in agreement with the high quantum yield of photosynthesis. The lower lifetime limit of 1.4 ns of the slow component is assigned to the average transfer time of an excited state from a closed to a neighboring open reaction center and the increase in the lifetime to 2.2 ns is evidence for a limited energy transfer between photosystems II. Relative effects of changing the excitation wavelength from 630 to 652 nm on the relative fluorescence yields of the kinetic components were studied at the fluorescence wavelengths 682, 703 and 730 nm. Our data indicate that (i) the middle component has its fluorescence maximum at shorter wavelength than the fast component and (ii) that the antennae chlorophylls giving rise to the middle component are preferentially excited by 652 nm light. It is concluded that the middle component originates from the light-harvesting chlorophyll alb protein complexes and the major portion of the fast component from the chlorophyll a antennae of open photosystem II reaction centers.  相似文献   

8.
Free volume characteristics in three samples of monodisperse polystyrene were investigated by positron annihilation technique over a temperature range from 300 to 380 K. The number-average molecular weight of the samples ranged from 5730 to 1,524,000. The observed lifetime spectra were resolved into three components, where the longest lifetime, τ3 was associated with the pick-off annihilation of ortho-positronium (o-Ps) trapped by free volumes. The change of the temperature coefficient of τ3 was observed at around 350 K, at which the value of τ3 was a constant value of 2,3 ns for all specimens with different molecular weights. There was no discrete change of τ3 in intensity, which is corresponding to the number of free volumes. The size of free volume at glass transition was evaluated to be 0.l nm3. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The photophysical properties of benzoporphyrin derivative monoacid ring A (BPD-MA), a second-generation photosensitizer currently in phase II clinical trials, were investigated in homogeneous solution. Absorption, fluorescence, triplet-state, singlet oxygen (O2(1Δg)) sensitization studies and photobleaching experiments are reported. The ground state of this chlorin-type molecule shows a strong absorbance in the red (λ≈ 688 nm, ?≈ 33 000 M?1 cm?1 in organic solvents). For the singlet excited state the following data were determined in methanol: energy level, Es= 42.1 kcal mol?1, lifetime, Φf= 5.2 ns and fluorescence quantum yield, Φf= 0.05 in air-saturated solution. The triplet state of BPD-MA has a lifetime, τf >. 25 ns, an energy level, ET= 26.9 kcal mol?1 and the molar absorption coefficient is ?T= 26 650 M?1 cm?1 at 720 nm. A dramatic effect of oxygen on the fluorescence (φf) and intersystem crossing (φT) quantum yields has been observed. The BPD-MA presents rather high triplet (φT= 0.68 under N2-saturated conditions) and singlet oxygen (φΔ= 0.78) quantum yields. On the other hand, the presence of oxygen does not significantly modify the photobleaching of this photostable compound, the photodegradation quantum yield (φPb) of which was found to be on the order of 5 × 10?5 in organic solvents.  相似文献   

10.
Abstract— The photosystem II (PSII) reaction center in higher plants is susceptible to photoinhibitory molecular damage of its component pigments and proteins upon prolonged exposure to excess light in air. Higher plants have a limited capacity to avoid such damage through dissipation, as heat, of excess absorbed light energy in the PSII light-harvesting antenna. The most important pho-toprotective heat dissipation mechanism, induced under excess light conditions, includes a concerted effect of the trans-thylakoid pH gradient (ΔpH) and the carotenoid pigment interconversions of the xanthophyll cycle. Co-incidentally, both the photoprotective mechanism and photoinhibitory PSII damage decrease the PSII chlorophyll a (Chi a) fluorescence yield. In this paper we present a comparative fluorescence lifetime analysis of the xanthophyll cycle- and photoinhibition-dependent changes in PSII Chi a fluorescence. We analyze multifrequency phase and modulation data using both multicomponent exponential and bimodal Lorentzian fluorescence lifetime distribution models; further, the lifetime data were obtained in parallel with the steady-state fluorescence intensity. The photoinhi-bition was characterized by a progressive decrease in the center of the main fluorescence lifetime distribution from ~2 ns to ~0.5 ns after 90 min of high light exposure. The damaging effects were consistent with an increased nonra-diative decay path for the charge-separated state of the PSII reaction center. In contrast, the ΔpH and xanthophyll cycle had concerted minor and major effects, respectively, on the PSII fluorescence lifetimes and intensity (Gilmore et ah, 1996, Photosynth. Res., in press). The minor change decreased both the width and lifetime center of the longest lifetime distribution; we suggest that this change is associated with the ΔpH-induced activation step, needed for binding of the deepoxidized xanthophyll cycle pigments. The major change increased the fractional intensity of a short lifetime distribution at the expense of a longer lifetime distribution; we suggest that this change is related to the concentration-dependent binding of the deepoxidized xanthophylls in the PSII inner antenna. Further, both the photoinhibition and xanthophyll cycle mechanisms had different effects on the relationship between the fluorescence lifetimes and intensity. The observed differences between the xanthophyll cycle and photoinhibition mechanisms confirm and extend our current basic model of PSII exciton dynamics, structure and function.  相似文献   

11.
Five luminescent tris(bipyridine)-based cryptates with the lanthanoids Eu and Nd have been prepared with a systematic increase in the number of 2,2′-bipyridine-N,N′-dioxide units and with different deuteration levels in the complexing cryptands for the europium species. Careful analysis of the radiative lifetime τrad in these systems reveals that an increase in N-oxide units around the metal centers uniformly lowers τrad by about 30–40 %. The potential involvement of nephelauxetic effects is discussed. Exchange of 30 C−D for C−H oscillators around the europium centers does not affect the radiative lifetimes but decreases non-radiative deactivation and increases the overall luminescence quantum yield in D2O by 45 %.  相似文献   

12.
Positron lifetime spectroscopy has been applied to study the temperature dependence of free-volume properties in a solvent-free polymer–salt complex polyethylene oxide (PEO) doped with ammonium iodide (NH4I, with NH ≈ 0.076) in the temperature range of 298–353 K. The observed lifetime spectra were resolved into three components and the longest lifetime, τ3, was associated with the pick-off annihilation of ortho-positronium (o-Ps) trapped by the free volume. The lifetime component, τ3, and its intensity, I3, both showed a significant variation with temperature, which followed a different course in the heating and cooling cycle. Changes in the temperature coefficient of τ3 and I3 were observed at T ≈ 328 K, the melting point of the sample. This behaviour is correlated to the temperature variation of the electrical conductivity. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 969–976, 1998  相似文献   

13.
Effects of solvent, pH and hydrogen bonding with N‐methylimidazole (MIm) on the photophysical properties of 1‐hydroxyfluorenone (1HOF) have been studied. Fluorescence lifetime, fluorescence quantum yield and triplet yield measurements demonstrated that intersystem crossing was the dominant process in apolar media and its rate constant significantly diminished with increasing solvent polarity. The acceleration of internal conversion in alcohols paralleled the strength of intermolecular hydrogen bonding. The faster energy dissipation from the singlet‐excited state in cyclohexane was attributed to intramolecular hydrogen bonding. The pKa of 1HOF decreased from 10.06 to 5.0 on light absorption, and H3O+ quenched the singletexcited molecules in a practically diffusion‐controlled reaction. On addition of MIm in toluene, dual fluorescence was observed, which was attributed to reversible formation of excited hydrogen‐bonded ion pair. Rate constants for the various deactivation pathways were derived from the combined analysis of the steady‐state and the time‐resolved fluorescence results.  相似文献   

14.
The fluorescence quantum yield and lifetime of the slow component of fluorescence obtained along the rotational contour of the 610 and 620 absorption bands of s-triazine at low pressure show a marked variation. For each band, the quantum-yield spectrum shows a sharp peak at the Q-branch edge, the lifetime spectrum exhibits a valley at the same position.  相似文献   

15.
Absorption spectra and fluorescence spectra are essential for use across the photosciences, yet such spectra along with the all‐important values for molar absorption coefficient (ε) and fluorescence quantum yield (Φf) often are found with great difficulty. Here, a literature survey concerning the vital class of chlorophyll compounds has led to identification of spectra for 150 members. Spectra in print form have been digitized (with baseline corrections) and assembled into a database along with literature references, solvent identity and values for ε and Φf (where available). The database encompasses photosynthetic tetrapyrroles wherein the chromophore is a porphyrin (e.g. chlorophyll c1, protochlorophyll a), chlorin (e.g. chlorophyll a, bacteriochlorophyll c) or bacteriochlorin (e.g. bacteriochlorophyll a). Altogether, the database contains 305 absorption spectra (from 19 porphyrins, 109 chlorins and 22 bacteriochlorins) and 72 fluorescence spectra (from 10 porphyrins, 30 chlorins and 4 bacteriochlorins). The spectral database should facilitate comparisons and quantitative calculations. All spectra are available in print form in the Supporting Information. The entire database in digital form is available with the PhotochemCAD program for free downloading and further use at http://www.photochemcad.com .  相似文献   

16.
The correlation of dibutyl-ether-ester of xanthene dye structures with their photophysical properties is discussed with respect to their capability as fluorescent probes based on ultraviolet–visible absorption, fluorescence spectra and fluorescence lifetimes measured in different solvents. It was found that the dibutyl-ether-ester of fluorescein is very weakly emissive in aprotic solvents, but fairly strong fluorescent in alcohols. The dependence of fluorescence quantum yield (Φf) and lifetime (τf) on solvent polarity suggests non-involvement of the intra-molecular photoinduced electron transfer (PeT) mechanism, suggested previously to account for the emission efficiency of fluorescein derivatives. The xanthene dyes intend to self-assemble in aprotic solvents, less polar solvents facilitate the aggregation while hydrogen bonding disfavor it. The formation of non-emissive H-aggregates is proposed to be responsible for their fluorescent behavior. The esterification showed stronger influences on the photophysics than the etherification, i.e. the former caused larger reduction of Φf owing to the internal conversion. The halogenation decreases the fluorescence quantum yield and lifetime of the xanthene dyes, owing to the enhancement of inter-system crossing process.  相似文献   

17.
Abstract— The variable chlorophyll (Chl) a fluorescence yield is known to be related to the photochemical activity of photosystem II (PSII) of oxygen-evolving organisms. The kinetics of the fluorescence rise from the minimum yield, F0, to the maximum yield, Fm, is a monitor of the accumulation of net reduced primary bound plastoquinone (QA) with time in all the PSII centers. Using a shutter-less system (Plant Efficiency Analyzer, Hansatech, UK), which allows data accumulation over several orders of magnitude of time (40 μs to 120 s), we have measured on a logarithmic time scale, for the first time, the complete polyphasic fluorescence rise for a variety of oxygenic plants and cyanobacteria at different light intensities. With increasing light intensity, the fluorescence rise is changed from a typical O-I-P characteristic to curves with two intermediate levels J and I, both of which show saturation at high light intensity but different intensity dependence. Under physiological conditions, Chl a fluorescence transients of all the organisms examined follow the sequence of O-J-I-P. The characteristics of the kinetics with respect to light intensity and temperature suggest that the O-J phase is the photochemical phase, leading to the reduction of QA to QA-. The intermediate level I is suggested to be related to a heterogeneity in the filling up of the plastoquinone pool. The P is reached when all the plastoquinone (PQ) molecules are reduced to PQH2. The addition of 3-(3–4-dichlorophenyl)-1,1-dimethylurea leads to a transformation of the O-J-I-P rise into an O-J rise. The kinetics of O-J-I-P observed here was found to be similar to that of O-I1-I2-P, reported by Neubauer and Schreiber (Z. Naturforsch. 42c , 1246–1254, 1987). The biochemical significance of the fluorescence steps O-J-I-P with respect to the filling up of the plastoquinone pool by PSII reactions is discussed.  相似文献   

18.
The fluorescence lifetimes (τfl) of alkyl and alkoxy substituted dihydroquinolines (DHQ) were measured in hexane, isopropanol, methanol, and water. It was shown that τfl was determined by the solvent nature and weakly depended on substituents on the DHQ aromatic ring and heterocycle, with τfl being substantially lower in methanol than in the other solvents. The decrease in τfl in MeOH is caused by an increase in the rate constants of the photochemical reaction and nonradiative transitions in this solvent. The quantum yield of fluorescence in H2O and MeOH, in which the photoinduced addition of the solvent molecules occurs, decreases with a decrease in the excitation wavelength within the limits of long-wavelength absorption band, thus providing strong evidence that the photochemical reaction proceeds from the unrelaxed excited state.  相似文献   

19.
G-quadruplex DNA show structural polymorphism, leading to challenges in the use of selective recognition probes for the accurate detection of G-quadruplexes in vivo. Herein, we present a tripodal cationic fluorescent probe, NBTE , which showed distinguishable fluorescence lifetime responses between G-quadruplexes and other DNA topologies, and fluorescence quantum yield (Φf) enhancement upon G-quadruplex binding. We determined two NBTE -G-quadruplex complex structures with high Φf values by NMR spectroscopy. The structures indicated NBTE interacted with G-quadruplexes using three arms through π–π stacking, differing from that with duplex DNA using two arms, which rationalized the higher Φf values and lifetime response of NBTE upon G-quadruplex binding. Based on photon counts of FLIM, we detected the percentage of G-quadruplex DNA in live cells with NBTE and found G-quadruplex DNA content in cancer cells is 4-fold that in normal cells, suggesting the potential applications of this probe in cancer cell detection.  相似文献   

20.
A study of fluorescence quantum yields and fluorescence lifetimes of the cyclic azoalkanes I and II reveals a striking dependence of ΦF and τF on solvent and on isotopic substitution (OH å OD). A mechanism involving specific deactivation of the fluorescent state from a hydrogen bonded complex is proposed to rationalize the data. The observation that the quantum yield for decomposition of I does not correlate with the variation of fluorescence parameters with solvent and isotopic change leads to the conclusion that the state responsible for photoreaction proceeds the fluorescent state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号