首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferrichrome, a fungal siderophore that is also utilized by some bacterial species, was studied with liquid secondary ion mass spectrometry (LSIMS) and matrix-assisted laser desorption ionixation (MALDI) mass spectrometry. A strong ionic signal corresponding to a FeIII complex was observed with LSIMS in the positive ion mode. Switching the polarity of the mass spectrometer did not necessarily result in reduction of ferric ion, although certain conditions led to appearance of a FeII complex signal as well. The results of the structural studies of the metal ion-cyclic peptide complex with collisionally induced dissociation allowed unambiguous identification of the chelation sites. The action of the siderophore on FeIII was studied by in vitro chelation of ferric ion (from ferric citrate) by the iron-free ferrichrome. Effective chelation of ferric ion was compared to actions of the iron-free ferrichrome on other metal ions. Unlike LSIMS, desorption with MALDI did not form selectively molecular ions of intact ferrichrome: the spectra contained abundant peaks corresponding to the cyclic peptide itself and its nonspecific association with alkali metal ions.  相似文献   

2.
The types, extent, and overall distribution of peptide fragmentation produced by matrix-assisted laser desorption-ionization-postsource decay (MALDI-PSD) on a reflector time-of-flight mass spectrometer were compared with those obtained from high and low energy collision-induced dissociation (CID) on a four-sector mass spectrometer and from liquid secondary ion mass spectrometry (LSIMS) ion source fragmentation and LSIMS metastable ion (MI) decomposition on a two-sector mass spectrometer. The model peptides studied had sequences and compositions that yielded predominantly either N- or C-terminal fragmentation from CID. For des-Arg1 and des-Arg9 bradykinin (i.e., H-PPGFSPFR-OH and H-RP-PGFSPF-OH, respectively), the types of fragment ions and the extent to which each type is formed in both MALDI-PSD and low energy CID spectra are remarkably similar. This observation suggests that both methods deposit comparable internal energies (IE) into [M + H]+ precursor ions. The distribution of N-terminal, C-terminal, immonium, and internal fragmentation from MALDI-PSD spectra of des-Arg1 and des-Arg9 bradykinin did not change dramatically with respect to the terminal arginine position, contrary to those from LSIMS MI decomposition, high and low energy CID spectra. This observation in combination with the prominent immonium, internal, and minus 17 fragment ion types in PSD indicates that the imparted IE from MALDI and the 14 µs of flight time may promote steady-state decomposition kinetics. Fragmentation distributions of MALDI-PSD spectra are also similar to those in LSIMS spectra. This implies that the distribution of protonation sites in [M + H]+ is comparable for both techniques.  相似文献   

3.
Reactive Blue 19 (RB 19), its reactive form (RB 19-VS) and its hydrolyzed form (RB 19-OH) were examined using liquid secondary ion mass spectrometry/tandem mass spectrometry (LSIMS/MS/MS) in the negative-ion mode under low-energy collision conditions (240–300 eV). Structurally characteristic fragment ions were obtained, none of which has been previously reported for these reactive dyes. Among the ions obtained were SO3? ions, ions due to central amino cleavage and reactive group cleavage, and ions due to loss of SO3 and SO2. Possible pathways for the formation of product ions are proposed. The structural information obtained should help to characterize and identify reactive dyes better.  相似文献   

4.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has been shown to be an effective technique for the characterization of organometallic, coordination, and highly conjugated compounds. The preferred matrix is 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB), with radical ions observed. However, MALDI-TOFMS is generally not favored for accurate mass measurement. A specific method had to be developed for such compounds to assure the quality of our accurate mass results. Therefore, in this preliminary study, two methods of data acquisition, and both even-electron (EE+) ion and odd-electron (OE+.) radical ion mass calibration standards, have been investigated to establish the basic measurement technique. The benefit of this technique is demonstrated for a copper compound for which ions were observed by MALDI, but not by electrospray (ESI) or liquid secondary ion mass spectrometry (LSIMS); a mean mass accuracy error of -1.2 ppm was obtained.  相似文献   

5.
Reductive amination with n-hexylamine followed by permethylation was used as a procedure for the liquid secondary ion mass spectrometry (LSIMS) analysis of Asn-linked oligosaccharides. Initial experiments with this procedure were performed on maltoheptaose. These experiments show that exhaustive methylation at the newly formed secondary nitrogen forms a quaternary ammonium salt. When this is subjected to positive ion LSIMS, an abundant M+ ion is observed. This procedure was applied to the Asn-linked oligosaccharides released from human transferrin and ribonuclease-B. The reductively aminated, permethylated mixture of oligosaccharides from ribonuclease-B afforded a positive ion LSI mass spectrum in which M+ ions for Mans5–9GlcNAc2 could be assigned. The positive ion LSI mass spectrum obtained from the mixture of oligosaccharides isolated from human transferrin showed M+ ions that could be assigned to both monosialylated and disialylated biantennary complex type oligosaccharides. Reductive amination followed by permethylation of the Asn-linked oligosaccharides isolated from baculovirus expressed mouse interleukin-3 produced in Bombyx mori gave a positive ion LSI mass spectrum in which the oligosaccharides could be assigned the monosaccharide composition Man2–4[Fuc]GlcNAc2 and Man2GlcNAc2. These are believed to be dimannose, trimannose, and tetramannose chitobiose core oligosaccharides, three of which are fucosylated.  相似文献   

6.
252Cf plasma-desorption mass spectrometry (PDMS) has been demonstrated to provide sequence-specific fragmentation for several oligopeptides. The nature of the fragment ions observed is generally similar to that observed using liquid secondary-ion mass spectrometry (LSIMS) and can be observed using less sample than LSIMS requires, but PDMS spectra are acquired at a lower resolution. In addition, the molecular weight of some of the oligopeptides studied exceeds that which is generally accepted as within the sequence range of LSIMS. The specific series of sequence ions that predominate in the PDMS spectra appear to be related to the amino acid compositions and sequences of the oligopeptides.  相似文献   

7.
Permethylated, peracetylated and perbenzoylated derivatives of glycosphingolipids (GSLs) were prepared to compare their liquid secondary ionization mass spectrometric (LSIMS) and collision-induced dissociation tandem mass spectrometric (CID/MS/MS) fragmentation patterns and also to determine sensitivity improvement in LSIMS and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) relative to the native species. Permethylation was carried out in the liquid phase, whereas peracetylation and perbenzoylation could be effected using either liquid (bulk)-phase or gas-phase procedures. Lower amounts of starting material were required for the gas-phase derivatization (? 100 pmol) compared with the bulk phase (?1 nmol), because the former method permits more efficient sample handling. All three types of derivatives yielded sensitivity improvements of at least two orders of magnitude over the native species in both LSIMS and MALDI-TOFMS. The behavior of the permethylated compounds was used as the benchmark for GSL structural information content in normal and tandem mass spectra. Fragments present in spectra of the three types of derivatives generated complementary information. Permethylated GSLs favored the formation of ions related to the ceramide moieties, whereas peracetylation enhanced the production of carbohydrate-related ions. The LSI mass spectra of perbenzoylated GSLs contained information on both ceramide and sugar portions of the molecules. Each of the LSIMS, MS/MS and MALDI-TOFMS techniques proved to be complementary to the others in this study; the use of all three is recommended for the generation of complete structural information.  相似文献   

8.
Mass spectrometry methods have been used to characterize two proteins: an opioid peptide-containing protein extracted from bovine pituitary, and bovine α-lactalbumin (BAL). A protein that contains β-endorphin was found in bovine pituitary, and that protein was characterized with electrospray ionization mass spectrometry (ESIMS), gel permeation chromatography, reversed-phase high performance liquid chromatography (RP-HPLC), radioimmunoassay, trypsinolysis, and liquid secondary ion mass spectrometry (LSIMS). BAL is a protein that was used as a model to develop analytical methods to study opioid peptide-containing proteins. Commercial BAL was purified by RP-HPLC, and its molecular weight (M.W.) was determined by ESIMS. The shift in mass observed following dithiothreitol (DTT) reduction estimated the number of disulfide bonds. For all of the data obtained for BAL with or without RP-HPLC separation, ESIMS determined the M.W. of the peptides produced by trypsin treatment of BAL, and LSIMS selected a precursor ion, the protonated molecule ion [M + H]+, of a tryptic peptide, which was analyzed by tandem mass spectrometry. Following DTT reduction, ESIMS and LSIMS detected each peptide that contained disulfide bonds in that mixture of tryptic peptides.  相似文献   

9.
Some features of a ‘matrix suppression effect’ caused by ionic surface‐active compounds under fast‐atom bombardment (FAB) liquid secondary ion mass spectrometry (LSIMS) are being revised. It is shown that abundant transfer of the glycerol matrix molecules to the gas phase does occur under FAB‐LSIMS of ionic surfactants, contrary to popular belief. This process can be obscure because of the dependence of the charge state of the glycerol‐containing cluster ions on the type of ionic surfactant. It is revealed that, while glycerol matrix signals are really completely suppressed in the positive ion mass spectra of cationic surfactants (decamethoxinum, aethonium), abundant deprotonated glycerol and glycerol‐anion clusters are recorded in the negative ion mode. In the case of an anionic surfactant (sodium dodecyl sulfate), on the contrary, glycerol is completely suppressed in the negative ion mode, but is present in the protonated and cationized forms in the positive ion mass spectra. It is suggested that such patterns of positive and negative ion FAB‐LSIMS spectra of ionic surfactants solutions reflect the structure and composition of the electric double layer formed at the vacuum‐liquid interface by organic cations or anions and their counterions. Processes leading to the formation of the glycerol‐containing ions preferentially of positive or negative charge are discussed. The most obvious of them is efficient binding of glycerol to inorganic counterions of the salts Cl? or Na+, which is confirmed by data from quantum chemical calculations. The high content of the counterions and relatively small content of glycerol in the sputtered zone may be responsible for the charge‐selective suppression of neat glycerol clusters of opposite charge to the counterions. In the case of a mixture of cationic and anionic surfactants the substitution of inorganic counterions by organic ones was observed. The dependence of the exchange rate in the surface layer is not a linear function of the bulk solution concentration, and an effect of abrupt recharging of the surface can be registered. No both positively or negatively charged pure glycerol and glycerol‐inorganic counterion clusters are recorded for the mixture. Correlations between the mass spectrometric observations and some phenomena of surface and colloid chemistry and physics are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The differences in boundary-activated dissociation (BAD) onsets have been investigated for peptide ions that were generated by two different ionization techniques, nanoflow electrospray ionization (nanoESI) and liquid secondary-ion mass spectrometry (LSIMS). BAD onsets of these ions were determined to compare the relative internal energies of the ions. Protonated peptide ions formed by nanoESI had lower BAD onsets than ions formed by LSIMS. The BAD onsets of peptides derivatized to have a fixed charge on the N-terminus also were lower for those generated by nanoESI than those generated by LSIMS. The BAD onsets of ions formed by nanoESI did not change with the variation of collisional cooling periods after gating ions into the ion trap and after isolating them prior to dissociation, indicating that the ions formed by the two ionization techniques would not adopt the same energy distributions. It is proposed that the ions formed by the two techniques differ in secondary structure, and the LSIMS ions are collisionally cooled to a lower local minimum along the potential energy surface than the nanoESI ions. Ions formed by both techniques show the same dissociation patterns, so assuming the absolute energy required for dissociation is the same, the LSIMS ions possess a higher critical energy of dissociation. This leads to the observation of the higher BAD onset.  相似文献   

11.
Anabolic androgenic steroids are widely abused substances in sports doping. Their detection present limitations regarding the use of soft ion sources such as electrospray or atmospheric pressure chemical ionization by liquid chromatography–tandem mass spectrometry. In the current study, a novel derivatization method was developed for the ionization enhancement of selected anabolic androgenic steroids. The proposed method aims at the introduction of an easily ionizable moiety into the steroid molecule by converting the hydroxyl groups into imidazole carbamates using 1,1′‐carbonyldiimidazole as derivatization reagent. The proposed method was applied to water and urine samples spiked with exogenous anabolic androgenic steroids in various concentration levels. Steroid imidazole carbamate derivatives have shown intensive [M+H]+ signals under electrospray ionization and common fragmentation patterns in tandem mass spectrometry mode with [M‐CO2+H]+ and [M‐ΙmCO2+H]+ as major ions with low collision energy. The obtained results showed that the majority of steroids were detectable at concentrations equal or lower to their minimum required performance level according to the World Anti‐Doping Agency technical document. The proposed method is sensitive with a preparation procedure that could be easily applied to the analysis of doping control samples.  相似文献   

12.
Several derivatized monosaccharides, the 2-deoxy-D -ribofuranoses, have been studied by liquid-assisted secondary ion mass spectrometry (LSIMS) in order to gain insight into the factors affecting ionization in FAB/LSIMS. Examination of the mass spectra for these compounds obtained in eight liquid matrices (diethanolamine, ethylene glycol, glycerol, 2-hydroxyethyl disulfide, 2-hydroxyphenethyl alcohol, 3-nitrobenzyl alcohol, sulfolane and thioglycerol) reveals that in all cases the anomalous [M – H]+ ion is the predominant species in the molecular ion region and that [M + Na]+ species are observed in the presence of Na+. The analysis of these compounds by chemical ionization with ammonia shows [M + H]+ as the major species while [M – H]+ is essentially absent. This indicates that the ionization processes occurring in the two techniques are not analogous. Thermodynamic considerations based on the gas-phase hydride ion affinities of the protonated matrices do not support a predominant gas-phase mechanism for the formation of [M – H]+ in LSIMS. However, it is possible using solvation energies to rationalize the formation of [M – H]+ in terms of condensed-phase ionization processes which take place either in the liquid matrix or in the dense selvedge region immediately above the surface where extensive solvation is present. Electrospray data obtained for one of the derivatized monosaccharides indicates that the [M – H]+ is not performed in the condensed phase in LSIMS and that it is the product of fast ion beam-induced processes. While the nature of the matrix is seen to have little effect on the intensities of [M – H]+ and [M + H]+ it is observed to be an important factor for the intensity of M+˙ for one of the monosaccharides. This effect can be related to the electron-scavenging properties of the matrices and reinforces the hypothesis that condensed phase processes are significant in ionization.  相似文献   

13.
We are currently developing strategies to synthesize bisubstrate analogs as potential inhibitors of serine and tyrosine protein kinases; several such analogs have been synthesized. The initial target proteins were the cAMP dependent protein kinase (cAPK) and the Ca+2/calmodulin dependent protein kinase (CaM kiiase II). These bisubstrate analogs were based on either known peptide substrates such as kemptide, a seven amino acid peptide substrate of cAPK, or on inhibitory peptides such as a seventeen amino acid peptide encompassing the autoinhibitory domain of CaM kinase II. Peptides containing a single phosphoserine group were first synthesized and then adenosine 5′-monophosphate (AMP), adenosine 5′-diphosphate (ADP), or adenosine 5′-triphosphate (ATP) was coupled through the serine phosphate with prior activation by 1,1-carbonyldiimidazole using either a solution or solid phase reaction scheme. In this current study, we report the characterization of the bisubstrate analogs by liquid secondary ionization mass spectrometry (LSIMS), matrix-assisted laser desorption mass spectrometry (MALDI), and tandem mass spectrometry (MS/MS). In the positive-ion mode, the LSIMS spectra of the bisubstrate analogs yielded a series of molecular ions containing mono-, di-, and trivalent cation adducts. Cation adducts were absent in the negative-ion mode where the dominant species were deprotonated molecular ions, [M ? H]?, making this latter technique more useful for confirming product identity and assessing purity. Analysis of these compounds by MALDI in both the positive- and negative-ion modes yielded molecular ions which also contained metal ion adducts, although they were limited primarily to Fe+2 adducts. Unlike LSIMS, the MALDI spectra showed no evidence for the elimination of the phosphoadenosine or other structural moieties. When these compounds were subjected to high energy collision-induced dissociation (CID), the dominant fragmentation pathways under positive-ion MS/MS conditions resulted from cleavage of the phosphate linkages to the adenosine moiety with charge retention on the peptide, although a major peak for 5′-deoxyadenosine was also seen at m/z 250. Charge retention in the negative-ion mode was most pronounced for ion fragments containing the highly acidic phosphate moieties and yielded phosphoadenosine related ions, for example, (AMP-H)?, (AMP-H-H2O)?, (ADP-H)?, etc., as well as ions originating from the phosphate linker such as PO3 ?, H2PO4 ?, HP2O6 ?, H3P2O7 ?, and H2P3O9 ?. The largest phosphoadenosine ion in the negative-ion CID spectra for each bisubstrate analog, for example, m/z 426 (ADP-H)?, m/z 506 (ATP-H)?, or m/z 586 (AP4-H)?, indicated that the desired covalent modification had been formed between the phosphoserine and APn moieties.  相似文献   

14.
The formation of cryptophane-A (C1) and the deuterated cryptophanes C2-C6 from their respective precursors P1-P6 in a mass spectrometer ion-source was evidenced by liquid secondary ion mass spectrometry (LSIMS). Mass-analyzed ion kinetic energy experiments performed on the precursor molecular ions suggested that cryptophane formation occurred mainly in the liquid-matrix before desorption rather than in the gas phase. In addition, we observed that the presence of cations, such as lithium or sodium ions, inhibited the formation of the cryptophane molecular ions. In the light of these results we used the LSIMS technique to investigate the formation of the new cryptophanes C7-C13. All the data collected support the idea that a direct comparison can be made between these experimental findings and chemistry in solution.  相似文献   

15.
Comparison of collisionally activated fragment spectra of long-chain quaternary ammonium ions, formed by liquid-assisted secondary ion mass spectrometry (LSIMS) and electrospray ionization (ESI), shows the latter are dominated by radical cations while the former yield mainly even-electron charge-site-remote (CSR) fragments, similar to the report for different precursors by Cheng et al., J. Am. Soc. Mass Spectrom. 1998, 9, 840. Here, mixed-site fragmentation products (formal loss of a radical directly bonded to the nitrogen plus a radical derived from the long chain) are of comparable importance for both ionization techniques. These observations are difficult to understand if the CSR ions are formed by a concerted rearrangement-elimination reaction, since precollision internal energies of the ESI ions are much lower than those of the ions from LSIMS. Alternatively, if one discards the concerted mechanism for high-energy CA, and assumes that the even-electron fragments are predominantly formed via homolytic bond cleavage, the colder radical cations from ESI survive to the detector while the more energized counterparts from LSIMS preferentially lose a hydrogen atom to yield the CSR ions, as proposed by Wysocki and Ross (Int. J. Mass Spectrom. Ion Processes 1991, 104, 179). The present work also attempts to reconcile discrepancies involving critical energies and known structures for neutral fragments.  相似文献   

16.
The accuracy of alpha spectrometry in the determination of uranium isotopes at various concentrations levels and with various isotope ratios was tested in a round robin international intercomparison exercise. Results of isotope activity/mass and isotope mass ratios obtained by alpha spectrometry were accurate in a wide range of uranium masses and in isotopic ratios typical of depleted, natural, and low enriched uranium samples. Determinations by alpha spectrometry compared very satisfactorily in accuracy with those by mass spectrometry. For example, determination of U isotopes in natural uranium by alpha spectrometry agreed with mass spectrometry determinations at within ±1%. However, the 236U isotope, particularly if present in activities much lower than 235U, might not be determined accurately due to overlap in the alpha particle energies of these two uranium isotopes.  相似文献   

17.
The 35 keV Cs+ liquid secondary-ion mass spectrometry (LSIMS) and 252Cf-plasma desorption (PD) mass spectra of recombinant proteins in the 10-25 kDa mass range are compared. Both techniques showed comparable mass accuracy and sensitivity, and in the case of LSIMS, remarkably short analysis time. Analysis by the PD/nitrocellulose method demonstrated slightly higher sensitivity and relatively lower dependence on the salt and buffer content of the protein sample.  相似文献   

18.
Chelating resins based on biopolymers, specifically cellulose, offers a green analytical method for determination of metal ions at trace levels present in various samples. It offers a fast, accurate and simple method for separation and pre-concentration of metal ions at low concentrations, prior to their determination by instrumental method. Cellulose based chelating resin (CELL-GLY) has been synthesised by immobilising glycine on it. CELL-GLY was used for the determination of trace amounts of Cu2+ and Ni2+ from aqueous solutions before their determination by FAAS. The preparation of CELL-GLY involves simple steps, based on natural and easily available biopolymer cellulose, which makes its use as chelating resin is a green method. The Cu2+ and Ni2+ can be quantitatively recovered from the CELL-GLY in the pH range 4.8–6.9 and 6.9-7.8 respectively with a recovery of more than 95% for each of these metal ions. Recovery of these metal ions using CELL-GLY was quantitative up to 35 °C. The detection limits for copper and nickel by FAAS were 1.20 ppb and 1.40 ppb, respectively. The method was successfully employed for the determination of trace amounts of Cu2+ and Ni2+ in various samples.  相似文献   

19.
The mass spectrometric behavior of stereo- and regioisomeric, partially saturated isoindoloquinazolines was studied by positive-ion electron ionization (EI) and fast-atom bombardment (FAB/LSIMS) mass spectrometry combined with collision-induced dissociation (CID). A highly stereospecific retro-Diels-Alder process was observed in the cyclohexene-fused isomers under the EI conditions, and a corresponding (although less specific) fragmentation was observed in their FAB spectra. In the absence of RDA fragmentations, regio- and stereoisomers of the cyclohexane-fused heterocycles could be distinguished based on their FAB/CID spectra.  相似文献   

20.
Cluster ion formation, with both oxygen and caesium as reactive elements, (MO and MCs+ ions) has been studied using secondary ion mass spectrometry. A comparison of various primary ion beam conditions is given. The investigations were carried out on aluminium oxide films and required a special charge compensation method. An improvement in the quantification concentration by use of cluster ions can only be expected from MCs+ measurements; however the total ionization probabilities still depend on matrix composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号