首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The overall extraction constants (Kex) of uni- andbivalent metal picrates with 15-(2,5-dioxahexyl)-15-methyl-16-crown-5(L16C5) were determined between benzene and water at 25°C. TheKex values were analyzed into the constituent equilibriumconstants, i.e., the extraction constant of picric acid, the distributionconstant of the crown ether, the stability constant of the metalion–crown ether complex in water, and the ion-pair extraction constantof the complex cation with the picrate anion. The Kex valuedecreases in the orders Ag+ > Na+ >Tl+ > K+ > Li+ andPb2+ > Ba2+ > Sr2+ for theuni- and bivalent metals, respectively, which are the same as those observedfor 16C5. The extraction selectivity was found to be governed by theselectivity of the ion-pair extraction of the L16C5–metal picratecomplex rather than by that of the complex formation in water. Theextraction ability of L16C5 is smaller for all the metals than that of 16C5,which is mostly attributed to the higher lipophilicity of L16C5. Differencesin the extraction selectivity between L16C5 and 16C5 were observed for thebivalent metals but little for the univalent metals. The side-arm effect onthe extraction selectivity was interpreted on the basis of the negativecorrelation between the effect on the complex stability constant in waterand that on the ion-pair extraction constant.  相似文献   

2.
Chromene derivatives bearing oxymethyl-12-crown-4 (1), -15-crown-5 (2), -18-crown-6 (3) ether moieties, and non-cyclic analogue (4) were synthesized, and their metal ion binding properties and photochromism were examined. NMR titration with alkali metal ions revealed that 1 formed a 1:2 complex (metal ion: ligand) with Na+, while Li+ afforded a 1:1 complex of 1. In cases of K+ and Rb+, the complexes were a mixture of 1:1 and 1:2 complexes, but the formation of 1:1 complex was observed again with Cs+. Under UV irradiation, however, the complex stoichiometry of 1 with all alkali metal ions was 1:1. As a comparison of NMR spectra between the Li+ and Na+ complexes of 1 indicated considerable upfield shift for the chromene moiety of the Na+ complex, π-π stacking of the chromene moiety seems to induce formation of the 1:2 complex. These results indicate that the chromene moiety is not only to show photochromism but also to induce aggregation to form the 1:2 complex resulted in switching of the complex stoichiometry by UV irradiation. The formation of 1:2 complex appeared only with 1 because flexibility of the crown moieties for 2 and 3 interfered the formation of 1:2 complex. Studies on photochromism in the presence of a metal ion demonstrated that the chromene derivatives bearing crown ether moieties show ion-responsive photochromism depending on the metal ion binding ability of their crown ether moieties.  相似文献   

3.
Using conductance measurements, an attempt has been made to gain detailed information about the specific molecular interactions of crown compounds with metal ions in a 1,4-dioxane/water binary system. Analyses of the transport data of dioxane/water mixtures yielded the mobility of the crown compound action complexes and the ion-pair dissociation constant of the crown compound–electrolyte complex. Binary mixed aqueous solvents are frequently employed in broad areas of chemistry. Their applicability ranges from synthetic and mechanistic studies in organic chemistry to biophysical chemistry, with emphasis on molecular interactions in biologically significant structures. Stability constants of crown compound complexes are determined by various methods, such as potentiometry (with ion selective electrodes), polarography, voltammetry, spectrophotometry, nuclear magnetic resonance, calorimetry and solubility. In this study the conductometry measurements have been carried out with high precision at optimal concentrations in dioxane/water systems. Structures of crown–cation complexes in dioxane/water mixtures are estimated from the conductance parameters (κ, Λ and α) as well as the complex formation constant, Ke = (ΛMAm − Λ) / (Λ − ΛMaLbAm) [L]. The conductance behavior of Na+, K+ chlorides and Na+ perchlorates with 18-crown-6, 15-crown-5, and 12-crown-4 have been studied in various dioxane/water systems (50%, 80%, and 85%) at 25°C. The all experimental studies have been made by the ratio 1 : 1 of the metal-ion and the crown ether, Ke. For the calculations, Excel. 5.0 was used as an application program. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
Investigation of the complexing of Na+, K+, Ca2+ and Ba2+ with some uncharged ligands by 13C-chemical shift and spin-lattice relaxation time measurements The influence of Na+, K+, Ca2+ and Ba2+ ions on 13C chemical shifts and on spin-lattice relaxation times of some electrically neutral ion carriers was investigated. In the solvents CD3CN and CD3OD and in presence of an excess of metal ions ligand 4 (see the Scheme) forms complexes of 1:1 stoichiometry. All four oxygen atoms of the ligand as well as solvent molecules take part in the coordination. In CDCl3 as solvent, for all ions investigated except sodium, only 1:2 complexes (metal/ligand) were observed with 4 . Sodium ions form both 1:1 and 1:2 complexes in this solvent. In the 1:2 complexes of the investigated monovalent ions only one, in those of the divalent ions both amide carbonyl groups of ligand 4 take part in the coordination.  相似文献   

5.
Katsuhiko Okano  Kenzi Hori 《Tetrahedron》2004,60(48):10877-10882
Molecular geometries of crown ether derivatives play an important role in capturing and transporting alkali metal ions such as Li+ and Na+. As the selectivity of ions is observed in solutions, it is necessary to know their molecular structures in solutions. Recently, we investigated stable conformations of 12-crown-O3N and its Li+ complex in aqueous solution by the combination of three programs, the CONFLEX, Gaussian 98, and BOSS programs. In the present study, we applied the same procedure to investigate stable structures of 12-crown-O3N complexes with an alkali ion in aqueous and acetonitrile solutions. It was confirmed that the stable structures of Li+ and Na+ complexes in solutions are highly dependent on the polarity of the solvents.  相似文献   

6.
Takeda Y  Ikeo N  Sakata N 《Talanta》1991,38(11):1325-1333
Enthalpy and entropy changes for ion-pair extractions of tetraalkylammonium ions (R(4)N(+)) with picrate anions, overall extractions of s-block metal picrates with 15-crown-5 (15C5) and 18-crown-6 (18C6) and the partition of 15C5 itself were determined between chloroform and water. The distribution behaviour of crown ethers and the extraction process of s-block metal picrates with the crown ethers are discussed in detail on molecular grounds from the thermodynamic point of view. Moreover, enthalpy and entropy changes for ion-pair extractions of 1:1 15C5- and 18C6-s-block metal ion complexes with picrate anions are calculated from these experimental thermodynamic parameters and the literature values for complex-formation reactions of the crown ethers with the s-block metal ions in water. Enthalpy and entropy changes are negative for overall extractions of all the s-block metal picrates with 15C5 and 18C6. The extractions of the metal picrates with 15C5 and 18C6 at 25 degrees are completely enthalpy driven. Plots of thermodynamic parameters for ion-pair extractions of R(4)NA vs. the number of carbon atoms of R(4)N(+) show a linear relationship. From these experimental data, contributions of a methylene group and an ether oxygen atom to the thermodynamic parameters of the ion-pair extraction of R(4)NA and the partition of the crown ethers, respectively, between chloroform and water were obtained. Enthalpy and entropy changes for ion-pair extractions of 15C5- and 18C6-s-block metal picrate complexes were compared with those of R(4)NA. A striking difference in the ion-pair extraction process was found between the crown ether complexes and R(4)NA.  相似文献   

7.
Incorporation into a 20-crown-6 of a bulky substituent capable of impeding cation/anion access to one face of the crown ether cavity is shown to afford compounds exhibiting good extraction selectivity for potassium ion over both alkaline earth cations (Ca2+, Sr2+) and other alkali metal ions (Na+, Cs+), an apparent result of diminished flexibility of the crown ether cavity, inhibition of the formation of extractable sandwich complexes with large cations, and the destabilizing effect of forcing charge-neutralizing counter anions to approach from one face of the crown cavity.  相似文献   

8.
The interaction of 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane (Kryptofix5) with alkali-metal cations (Li+, Na+, K+) in aprotic medium (acetonitrile) has been investigated. Conductance measurements demonstrated that 1:1 metal cation:ligand stoichiometries are found with these cations in this solvent. 7Li and 23Na NMR experiments were carried out by titration of the metal cation solutions with Kryptofix5 solution in CD3CN + CH3CN at 298 K. Thermodynamic parameters of complexation for this ligand and alkali-metal cations in acetonitrile at 278–308 K were derived from titration conductometry. The highest stability is found for sodium complex. The complexation sequence, based on the value of log K at 278–308 K was found to be Na+ > K+ > Li+.  相似文献   

9.
Precipitate formation between phosphotungstic acid and crown ethers is a general phenomenon, producing solids with selective ion exchange behavior for the alkali metal ions. Distribution coefficients for Li+, Na+, K+, and Cs+ were measured for a series of these precipitates with different crown ethers. The sorption data are more complicated than for the corresponding phosphomolybdates and indicate a variability in the number of exchangeable sites with H+ and M+ concentration. The crown ether used markedly affects the cation selectivity of the phosphotungstate precipitates.  相似文献   

10.
It is believed that the biological effects of chelating agents such as crown ethers are largely related to their ability to form complexes with ions and/or to facilitate ion transport across membranes. Specific influences are rarely related. Here we present the evidence that even one of the simplest representatives of the crown ether super-family, 1,4,7,10,13,16-hexaoxacyclooctane (18-crown-6), is able to affect the activity of Na+, K+-ATPase directly. Using nonlinear regression fitting to kinetic data we have found that the crown ether diminishes the apparent Michaelis constant, K m , and the maximal rate of ATP hydrolysis, V m , acting as noncompetitive inhibitors. The apparent dissociation constants, K i , for the crown interaction with the free ATPase and with the enzyme-substrate complex were established to be of 77 ± 3 mM and 21 ± 2 mM, respectively. So 18-crown-6 possesses weak but “direct” pharmacological activity on Na+, K+-ATPase hinders the formation of enzyme–substrate complex and detains the enzyme in this state.  相似文献   

11.
《Analytical letters》2012,45(13):1115-1122
Abstract

The extraction study of alkali metal ions was made with a new type of crown ether, 4′-picrylaminobenzo-15-crown-5 (HL). Upon dissociation in alkaline medium orange-colored HL gives blood-red anion, L?, and extracts selectively K+ (and to a lesser extent Rb+) ion into chloroform as a colored complex of composition ML·HL. A colorimetric determination of 10 - 400 ppm K+ in the presence of < 2000 ppm Na+ was possible using this new crown ether reagent.  相似文献   

12.
Biological ion channels use the synergistic effects of various strategies to realize highly selective ion sieving. For example, potassium channels use functional groups and angstrom-sized pores to discriminate rival ions and enrich target ions. Inspired by this, we constructed a layered crystal pillared by crown ether that incorporates these strategies to realize high Li+ selectivity. The pillared channels and crown ether have an angstrom-scale size. The crown ether specifically allows the low-barrier transport of Li+. The channels attract and enrich Li+ ions by up to orders of magnitude. As a result, our material sieves Li+ out of various common ions such as Na+, K+, Ca2+, Mg2+ and Al3+. Moreover, by spontaneously enriching Li+ ions, it realizes an effective Li+/Na+ selectivity of 1422 in artificial seawater where the Li+ concentration is merely 25 μM. We expect this work to spark technologies for the extraction of lithium and other dilute metal ions.  相似文献   

13.
New crown ether dyes carrying two pendent anionic side-arms were synthesized for the extraction-spectrophotometry of alkaline earth metal ions. In the extraction of alkaline earth metal ions by these dianionic reagents, size recognition by the crown ether ring was more remarkable than in the case of alkali metal ion extraction by a similar type of monoanionic reagents. Dramatic changes in metal selectivity were observed when the nature of the anionic side-arm was changed while the crown ether skeleton was kept the same. The structure/selectivity relationship is discussed in terms of “chelate” and “intramolecular ion-pair” formation. Typically, when the basicity of the pendent anions was relatively high and a six-membered chelate was structurally possible for the pendent anions and the crown-bound metal, the extraction of calcium was favored by up to a factor of 3000 in the ratio of the Ca/Ba extraction constants for reagents of the diaza-18-crown-6 type. In contrast, the reagents which had pendent anions with only poor coordination ability for metal ions seemed to form complexes of the ion-pair type, and calcium ion was 105 times less extractable than barium ion for the same diaza-18-crown-6-skeleton. Strontium ion seemed to be extracted most effectively when the extracted complex assumed properties intermediate between the chelate and intramolecular ion-pair.  相似文献   

14.
A new ditopic ion‐pair receptor 1 was designed, synthesized, and characterized. Detailed binding studies served to confirm that this receptor binds fluoride and chloride ions (studied as their tetraalkylammonium salts) and forms stable 1:1 complexes in CDCl3. Treatment of the halide‐ion complexes of 1 with Group I and II metal ions (Li+, Na+, K+, Cs+, Mg2+, and Ca2+; studied as their perchlorate salts in CD3CN) revealed unique interactions that were found to depend on both the choice of the added cation and the precomplexed anion. In the case of the fluoride complex [ 1? F]? (preformed as the tetrabutylammonium (TBA+) complex), little evidence of interaction with the K+ ion was seen. In contrast, when this same complex (i.e., [ 1? F]? as the TBA+ salt) was treated with the Li+ or Na+ ions, complete decomplexation of the receptor‐bound fluoride ion was observed. In sharp contrast to what was seen with Li+, Na+, and K+, treating complex [ 1? F]? with the Cs+ ion gave rise to a stable, receptor‐bound ion‐pair complex [Cs ?1? F] that contains the Cs+ ion complexed within the cup‐like cavity of the calix[4]pyrrole, which in turn was stabilized in its cone conformation. Different complexation behavior was observed in the case of the chloride complex [ 1? Cl]?. In this case, no appreciable interaction was observed with Na+ or K+. In addition, treating [ 1? Cl]? with Li+ produces a tightly hydrated dimeric ion‐pair complex [ 1? LiCl(H2O)]2 in which two Li+ ions are bound to the crown moiety of the two receptors. In analogy to what was seen in the case of [ 1? F]?, exposure of [ 1? Cl]? to the Cs+ ion gives rise to an ion‐pair complex [Cs ?1? Cl] in which the cation is bound within the cup of the calix[4]pyrrole. Different complexation modes were also observed when the binding of the fluoride ion was studied by using the tetramethylammonium and tetraethylammonium salts.  相似文献   

15.
To quantitatively elucidate the effects of the benzo group on the extraction-selectively and -ability of benzo-15-crown-5 (B15C5)for alkali metal ions, the constants of the overall extraction (Kex), thedistribution for various diluents having low dielectric constants (KD,MLA), and the aqueousion-pair formation (KMLA) of B15C5-alkali metal (Li, Na, K) picrate 1:1:1 complexes (MLA) weredetermined at 25 °C. The partition constants of B15C5were also measured at 25 °C. The log KMLA values for Li+, Na+, and K+ are -0.32 ± 0.22, 2.66 ± 0.19, and 0.71 ± 0.47, respectively. In going from 15-crown-5 (15C5) to B15C5, the benzo group considerably decreasesthe KMLA value for the same alkali metal ion. The distributionbehavior of B15C5 and its 1:1:1 complexes with the alkali metal picrates closely obeys regularsolution theory, omitting chloroform. Molar volumes and solubility parameters of B15C5and the 1:1:1 complexes were determined. For every diluent, the Kex valuefor B15C5 increases in the order Li+ < K+ < Na+. KD,MLA makes anunfavorable contribution to the Na+ extraction-selectivity of B15C5 because of the smallest molar volume of the Na(B15C5)A complex. The Na+ extraction-selectivity of B15C5 is determined completely by much the highest KNa(B15C5)A value.The extraction-ability and -selectivity of B15C5 for the alkali metal picrates are compared with those of 15C5on the basis of the underlying equilibrium constants.  相似文献   

16.

Stability constants (KML) of 1 : 1 benzo-15-crown-5 (B15C5) complexes with alkali metal ions were conductometrically measured in water at 25°C. Transfer activity coefficients of B15C5 and 15-crown-5 (15C5) from water to polar nonaqueous solvents were determined at 25°C. By using these data and the literature values, transfer activity coefficients of the B15C5 and 15C5 complexes with alkali metal ions from water to the polar nonaqueous solvents were calculated to study the solute-solvent interaction of the crown ether complexes. The stability of the B15C5 complex is lower in water than in any other nonaqueous solvent. The KML value for B15C5 is always smaller than the corresponding K ML value for 15C5. The interaction of the B15C5 or the 15C5 complex with the solvents depends on the alkali metal ion in the crown cavity. All the B15C5 and 15C5 complexes undergo hydrophobic hydration, which is particularly stronger for the B15C5 complexes with Na+ and K+. The unexpectedly lowest stability of the B15C5- or the 15C5-alkali metal ion complex in water among all the solvents is caused by the hydrogen bonding between ether oxygen atoms of uncomplexed B15C5 or 15C5 and water.  相似文献   

17.
Various mixed liquid crystals containing crown ether‐cholesteryl liquid crystal, benzo‐15‐crown‐5‐COO‐C27H45 (B15C5‐COOCh), with various common cholesteric liquid crystals, e.g., cholesteryl chloride, cholesteryl benzoate and cholesteryl palmitate, were prepared and studied using polarizing microscopy and differential scanning calorimetry. Investigating the concentration effect of B15C5‐COOCh in mixed liquid crystals revealed that the addition of B15C5‐COOCh resulted in wider phase transition temperature ranges of these cholesteryl liquid crystals. The stability of these B15C5‐COOCh/cholesteryl mixed liquid crystals was studied using comprehensive graphic molecular modeling computer programs (Insight II and Discover) to calculate their molecular energy and stability energy. The effect of salts, e.g. Na+, Co3+, Y3+ and La3+, on the transition temperature range of the mixed liquid crystals was also investigated. The crown ether cholesteric liquid crystal B15C5‐COOCh was applied both as a surfactant and an ion transport carrier to transport metal ions through liquid membranes. Cholesteryl benzo‐15‐crown‐5 exhibited distinctive characteristics of a surfactant and the critical micellar concentration (CMC) of the surfactant was investigated by the pyrene fluorescence probe method. Cholesteryl benzo‐15‐crown‐5 was successfully applied as a good ion transport carrier (Ionophore) to transport various metal ions, e.g. Li+, Na+, La3+, Fe3+ and Co3+, through organic liquid membranes. The transport ability of the cholesteryl benzo‐15‐crown‐5 surfactant for these metal ions was in the order: Co3+ ≥ Li+ > Fe3+ > Na+ > La3+.  相似文献   

18.
Katsuhiko Okano  Kenzi Hori 《Tetrahedron》2005,61(50):12006-12011
Molecular geometries of crown ether derivatives play an important role in capturing and transporting alkali metal ions such as Li+ and Na+. As selectivity of the ions is observed in solution, it is necessary to know their molecular structures in solutions. Recently, we investigated stable conformations of 12-crown-O3N and its alkali ion complexes in aqueous and acetonitrile solutions. In the present study, we applied a procedure similar to that in previous papers to investigate the side arm effect of 12-crown-O3N with an amine arm for capturing Li+ and Na+ in the two solutions. It was confirmed that the stable structures of Li+ and Na+ complexes in solutions, especially the geometry of the amine side arm, are highly solvent-dependent. This conformational difference is the key to understanding the high Li+ selectivity of 12-crown-O3N derivatives with an amine side arm in acetonitrile.  相似文献   

19.
《Analytica chimica acta》1987,203(1):85-89
The fluorescent 14-crown-4 derivative possesses a p-(1,8-naphthalenedicarboxi-mido) phenol moiety as the proton -dissociable fluorophore; its synthesis is described. Highly selective extraction of lithium is achieved with the crown ether, based on a proton/metal ion-exchange mechanism. Extraction is accompanied by significant changes in the absorption and fluorescence spectra of the organic phase. Extraction equilibrium constants for the lithium and sodium ions are evaluated, the Li+/Na+ selectivity ratio being 200; other alkali metal ions were not extracted. The Li+ extraction quenched the fluorescence intensity of the crown ether, in correlation with the initial cation concentration in the aqueous phase.  相似文献   

20.
New crown ether carrying two fluorionophores of cis‐dibenzothiazolyldibenzo‐24‐crown‐8 was synthesized from cis‐diformyldibenzo‐24‐crown‐8 and 2‐aminobenzenethiol. The binding behavior and the optical properties of the crown ether were examined through UV‐visible spectroscopy and fluorescence spectroscopy. When complexed with Na+, K+, Rb+, and Cs+ ions, it led to intramolecular charge transfer and caused the changes of the fluorescence spectra. The protonation of the crown ether was also studied. With protonation using CF3COOH, the absorption bands and the fluorescence spectroscopy changed, the maximal fluorescence wavelengths red shifted and the fluorescence intensity with the maximum at 433 nm enhanced strongly. J. Heterocyclic Chem., (2011).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号