首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new Zn(II) complexes containing the ligands 5-amino-8-methyl-4H-chromen-4-one (1), 6- or 7-amino-2-phenyl-4H-chromen-4-one (2, 3) were prepared. The new synthesised compounds were characterised by IR, 1H NMR and MS spectroscopy. The crystal structure of complex 4 was determined with the use X-ray diffraction. The Zn(II) centre of 4 is linked by two chlorido and two N-bound aminochromone ligands, 1, in a strongly distorted tetrahedral configuration with the dissymetric point group C2. The protonation constants of the ligands 1, 2 and 3 corresponded to 3.68, 3.88 and 6.83, respectively. The stability constants of the Zn(II) complexes were calculated from the potentiometric titration data. The complexes were found to have the formulae ML and ML2 for ligands 1 and 2, and ML for ligand 3. Fluorescence spectroscopic properties were also studied; the strongest fluorescence in solution was exhibited by complex 6.  相似文献   

2.
New di- (2) and tetracarboxylate ligands (4) were prepared on a sulfonylcalix[4]arene platform by O-alkylation of thiacalix[4]arene with ethyl bromoacetate, followed by hydrolysis of the ester function and oxidation of the sulfide bridges. The sulfonyl-based ligands 2 and 4 formed luminescent 1:1 complexes with terbium(III) ion having higher luminescent quantum yield (Φ = 0.291 and 0.287, respectively) than 1:1 complexes of the corresponding thiacalix[4]arene-based di- (1) and tetracarboxylate ligands (3) (Φ = 0.038 and 0.003, respectively), implying higher efficiency of sulfonyl ligands (2 and 4) than those of thia ligands (1 and 3) in the energy transfer process.  相似文献   

3.
The syntheses are reported of the ether-phosphine ligands: 2-(ortho-diphenylphosphinophenyl)-1,3-dioxolane (1a), 2-(ortho-diisopropylphosphinophenyl)-1,3-dioxolane (1b), 2-(ortho-diphenylphosphinophenyl)-1,3-dioxane (1c), 2-(ortho-diisopropylphosphinophenyl)-1,3-dioxane (1d). Their reaction with [(COD)RhCl]2 (COD: 1,5-cyclooctadiene) results in the formation of the mononuclear complexes: {chloro(COD)[2-(ortho-diphenylphosphinophenyl)-1,3-dioxolane]rhodium(I)} (2a), {chloro(COD)[2-(ortho-diisopropylphosphinophenyl)-1,3-dioxolane]rhodium(I)} (2b), {chloro(COD)[2-(ortho-diphenylphosphinophenyl)-1,3-dioxane]rhodium(I)} (2c), and {chloro(COD)[2-(ortho-diisopropylphosphinophenyl)-1,3-dioxane]rhodium(I)} (2d). The chloride ligands of compounds 2a and 2b were abstracted with TlPF6, with accompanied insertion of an acetal oxygen atom of the ligands 1a and 1b into the coordination sphere of the metal centre, producing {(COD)[η2-P,O-2-(ortho-diphenylphosphinophenyl)-1,3-dioxolane]rhodium(I)}PF6 (3a∗PF6) and {(COD)[η2-P,O-2-(ortho-diisopropylphosphinophenyl)-1,3-dioxolane]rhodium(I)}PF6 (3b∗PF6). In contrast the dioxane analogues of 3, 3c∗BF4 and 3d∗BF4, were formed by reacting the ligands 1c, 1d with [Rh(COD)2]BF4. The ligands 1 and the complexes 2 serve as model compounds for their via acetalation to a polyvinylalcohol resin bound analogues. The complexes synthesised were employed as pre-catalysts in the hydroformylation reaction of 1-octene.  相似文献   

4.
Novel rhenium complexes containing the maltolate (mal) or kojate (koj) anions as chelating ligands have been synthesized: [ReOCl(mal)2] (1), [ReOCl2(mal)(PPh3)] (2), [ReOBr2(mal)(PPh3)] (3), [ReOCl2(koj)(PPh3)] (4) and [ReOBr2(koj)(PPh3)] (5). The products have been characterized by FTIR, 1H, 13C, and 31P NMR spectroscopies and elemental analysis. The crystal and molecular structures of all complexes were determined. Complex 1 crystallizes monoclinic, space group C2/c, Z = 8. It contains two O,O′-bidentate maltolate ligands and one chloro ligand at the (ReO)3+ unit, so that a distorted octahedral geometry is adopted by the six-coordinated rhenium(V) center. The chloro ligand occupies a cis position to the oxo ligand. Complexes 2 and 3 are isostructural and crystallize orthorhombic, space group Pbca and Z = 8. The isostructural complexes 4 and 5 crystallize monoclinic, space group P21/n and Z = 4. In complexes 25, the (ReO)3+ unit is coordinated by a monoanionic O,O-bidentate unit of the maltolate (2 and 3) or kojate (4 and 5) ligand, one triphenylphosphine and two halogeno ligands (Cl in 2 and 4; Br in 3 and 5), with the rhenium(V) center in a distorted octahedral environment. The halide ligands are in cis positions to each other.  相似文献   

5.
Chiral tetrahydropentalenes (3aR,6aR)-1 have been prepared and used as ligands in the Rh-catalyzed 1,4-addition of 1-alkenylboronic acids to cyclic enones 5. It has been discovered that the stereochemistry of the reaction was controlled by the steric properties of the aryl groups in 1 rather than their electronic nature. In the vinylation with (E)-2-phenylethenylboronic acid 5, ligands (3aR,6aR)-1 provided enantioselectivity up to 87% ee and gave high yields of ethenylketones 6 in the presence of 1 (6.6 mol %). The configuration of all ketone products obtained with (3aR,6aR)-1 is (S). Rh-catalyzed reaction of cyclopentenone 4a and (Z)-propenylboronic acid 7 in the presence of ligands (3aR,6aR)-1 yielded at 50 °C an inseparable mixture of (Z)- and (E)-ketones 8 with (Z)-8 as the major product and both in only moderate enantiomeric excess.  相似文献   

6.
Pyridine-based N-phosphanylamidine ligands i-Pr2N-C(pyr)N-PR2 (R = Ph (3), i-Pr (4)) were synthesized and fully characterized by NMR spectroscopy and X-ray crystallography. Mononuclear rhodium complexes 7 and 8 were obtained in one step from the [RhCl(COD)]2 dimer and the monodentate ligands 1 and 2. Their single-crystal X-ray diffraction studies revealed the structural adaptive behavior of the monodentate N-phosphanylamidine ligands 1 and 2 upon k1-P coordination mode in rhodium(I) complexes with the imino nitrogen atom of the amidine function which behaves as a “universal joint”. Compounds 1-4 were evaluated as ligands in the 1-octene and styrene hydroformylation reactions. The results obtained are encouraging and represent the first report on the use of N-phosphanylamidine ligands of the type R″2N-C(R′)N-PR2 in catalytic reactions.  相似文献   

7.
Condensation of the O-protected hydroxyferrocene carbaldehyde (Sp)-1 with suitable diamines, followed by liberation of the hydroxyferrocene moiety leads to a new type of ferrocene-based salen ligands (3). While the use of ethylenediamine in the condensation reaction yields the planar-chiral ethylene-bridged ligand [(Sp,Sp)-3a], reaction with the enantiomers of trans-1,2-cyclohexylendiamine gives rise to the corresponding diastereomeric cyclohexylene-bridged systems [(S,S,Sp,Sp)-3b and (R,R,Sp,Sp)-3c], which feature a combination of a planar-chiral ferrocene unit with a centrochiral diamine backbone. Starting with the ferrocene-aldehyde derivative (Rp)-1, the enantiomeric ligand series (3d/e/f) is accessible via the same synthetic route.The (Sp)-series of these newly developed N2O2-type ligands was used for the construction of the corresponding mononuclear bis(isopropoxy)titanium (4a/b/c), methylaluminum (5a/b/c) and chloroaluminum-complexes (6a/b/c), which were isolated in good yields and identified by X-ray diffraction in several cases. The aluminum complexes (5/6) were successfully used in the Lewis-acid catalyzed addition of trimethylsilylcyanide to benzaldehyde, yielding the corresponding cyanohydrins in 45-62% enantiomeric excess.  相似文献   

8.
Two new N-pyrazole, P-phosphinite hybrid ligands 3-(3,5-dimethyl-1H-pyrazol-1-yl)propyldiphenylphosphinite (L3) and 2-(3,5-diphenyl-1H-pyrazol-1-yl)ethyldiphenylphosphinite (L4) are presented. The reactivity of these ligands and two other ligands reported in the literature (3,5-dimethyl-1H-pyrazol-1-yl)methyldiphenylphosphinite (L1) and 2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyldiphenylphosphinite (L2) towards [RhCl(CO)2]2 (1) have been studied and complexes [RhCl(CO)L] (L = L2 (2), L3 (3) and L4 (4)) have been obtained. For L1 only decomposition products have been achieved. All complexes were fully characterised by analytical and spectroscopic methods and the resolution of the crystalline structure of complexes 2 and 3 by single-crystal X-ray diffraction are also presented. In these complexes, the ligands are coordinated via κ2(N,P) to Rh(I), forming metallocycles of seven (2 and 4) or eight (3) members and finish its coordination with a carbonyl monoxide and a trans-chlorine to phosphorus atom. In both complexes, weak intermolecular interactions are present. NMR studies of complexes 2-4 show the chain N-(CH2)x-O becomes rigid and the protons diastereotopic.  相似文献   

9.
Reaction of 3-methoxycarbonyl-2-methyl- or 3-dimethoxyphosphoryl-2-methyl-substituted 4-oxo-4H-chromones 1 with N-methylhydrazine resulted in the formation of isomeric, highly substituted pyrazoles 4 (major products) and 5 (minor products). Intramolecular transesterification of 4 and 5 under basic conditions led, respectively, to tricyclic derivatives 7 and 8. The structures of pyrazoles 4a (dimethyl 2-methyl-4-oxo-4H-chromen-3-yl-phosphonate) and 4b (methyl 4-oxo-2-methyl-4H-chromene-3-carboxylate) were confirmed by X-ray crystallography. Pyrazoles 4a and 4b were used as ligands (L) in the formation of ML2Cl2 complexes with platinum(II) or palladium(II) metal ions (M). Potassium tetrachloroplatinate(II), used as the metal ion reagent, gave both trans-[Pt(4a)2Cl2] and cis-[Pt(4a)2Cl2], complexes with ligand 4a, and only cis-[Pt(4b)2Cl2] isomer with ligand 4b. Palladium complexes were obtained by the reaction of bis(benzonitrile)dichloropalladium(II) with the test ligands. trans-[Pd(4a)2Cl2] and trans-[Pd(4b)2Cl2] were the exclusive products of these reactions. The structures of all the complexes were confirmed by IR, 1H NMR and FAB MS spectral analysis, elemental analysis and Kurnakov tests.  相似文献   

10.
Chiral C2-symmetric bis(imidazoline) pincer ligands 2a-d have been synthesized for the first time. Direct cycloplatination of these ligands with K2PtCl4 in dry acetic acid afforded the corresponding cycloplatinated pincer complexes 3a-d. The X-ray single-crystal structure of platinum complex 3d and the preliminary studies on the photoluminescent properties of 3 are reported.  相似文献   

11.
One-pot synthesis of novel M2E2L2 type metallacycles [L(CO)3Re(μ-SeR)2Re(CO)3L] (1-5) was accomplished by oxidative addition of diaryl diselenide to low-valent transition metal carbonyl with monodentate pyridine ligands. In metallacycles 1-5, where L = pyridine ligand, R = C6H5, CH2C6H5, the pyridyl groups bonded to metal centres invariably adopted cis conformation due to π-π interaction whereas, in compounds 1a and 2a, the pyridyl ligands were oriented in trans conformation. When bulky phenyl groups are introduced at para position of pyridyl rings, as in case of metallacycle 3, the steric hindrance disrupts the soft interaction and resulted into the expansion of space in between two phenylpyridyl groups and created a void. The Metallacycles 1-5 have been characterised by elemental analysis, NMR, IR, absorption and emission spectroscopic techniques. Molecular structures of 1, 1a, 2, 2a, 3 and 4 were determined by single crystal X-ray diffraction analysis and the structural studies of 1, 2, 3 and 4 revealed that the pyridyl groups attached to the metal centres exhibited cis conformation, while 1a, 2a displayed trans conformation.  相似文献   

12.
Calix-bis(benzocrown-6) 6 and 7 were converted into the water-soluble receptors 9, 10, 12 and 15 by introducing hydroxy, carboxy, sulfato or diethanolamino groups at the para position of the phenolic ring and/or on the benzo-ether moieties. The complexation properties of these ionophores were studied for all alkali cations in methanolic and aqueous media. Stability constants were calculated by UV-Vis spectroscopy. All ligands showed a more or less affinity for the larger cations, depending on the nature and the position of the substituents grafted on the benzo-ether chain only or both on the calixarene ring and the benzo-ether loop. For selective Cs+/Na+ separation, the efficiency of the ligands was evaluated by means of a nanofiltration system. In comparison with the known tetrahydroxylated bis-crown-6 calix[4]arene 1, compounds 9, 12 and 15 represent the most selective ligands for the Cs+ cation in a moderate salted medium ([NaNO3]=85 g/L).  相似文献   

13.
Brian M. Bocknack 《Tetrahedron》2005,61(26):6266-6275
A practical enantioselective synthesis of chiral β-diketonate ligands 1a-1d, which are of ‘pseudo planar-chiral’ topology, is described. Additionally, the first chiral bis(diketonates) 2a-2c, ligands of C2-symmetry that are isoelectronic with respect to related salen ligand systems, have been prepared. Protocols for the metallation of ligands 1a-1d, 2b and 2c are reported.  相似文献   

14.
The reactions of Mo2(O2CCH3)4 with different equivalents of N,N′-bis(pyrimidine-2-yl)formamidine (HL1) and N-(2-pyrimidinyl)formamide (HL2) afforded dimolybdenum complexes of the types Mo2(O2CCH3)(L1)2(L2) (1) trans-Mo2(L1)2(L2)2 (2) cis-Mo2(L1)2(L2)2 (3) and Mo2(L2)4 (4). Their UV–Vis and NMR spectra have been recorded and their structures determined by X-ray crystallography. Complexes 2 and 3 establish the first pair of trans and cis forms of dimolybdenum complexes containing formamidinate ligands. The L1 ligands in 13 are bridged to the metal centers through two central amine nitrogen atoms, while the L2 ligands in 14 are bridged to the metal centers via one pyrimidyl nitrogen atom and the amine nitrogen atom. The Mo–Mo distances of complexes 1 [2.0951(17) Å], 2 [2.103(1) Å] and 3 [2.1017(3) Å], which contain both Mo?N and Mo?O axial interactions, are slightly longer than those of complex 4 [2.0826(12)–2.0866(10) Å] which has only Mo?O interactions.  相似文献   

15.
New chiral ligands (4 and 5) for polymetallic asymmetric catalysts were designed based on the hypothesis that the assembled structure should be stable when made from a stable module 8. A metal-ligand=5:6+μ-oxo+OH complex was generated from Gd(OiPr)3 and 4 or 5, and this complex was an improved asymmetric catalyst for the desymmetrization of meso-aziridines with TMSCN and conjugate addition of TMSCN to α,β-unsaturated N-acylpyrroles, compared to the previously reported catalysts derived from 1-3. These two groups of catalysts produced opposing enantioselectivity even though the ligands had the same chirality. The functional difference in the asymmetric catalysts is derived from differences in the higher-order structure of the polymetallic catalysts.  相似文献   

16.
Two bisphosphite ligands, 25,27-bis-(2,2′-biphenyldioxyphosphinoxy)-26,28-dipropyloxy-p-tert-butyl calix[4]arene (3) and 25,26-bis-(2,2′-biphenyldioxyphosphinoxy)-27,28-dipropyloxy-p-tert-butyl calix[4]arene (4) and two monophosphite ligands, 25-hydroxy-27-(2,2′-biphenyldioxyphosphinoxy)-26,28-dipropyloxy-p-tert-butyl calix[4]arene (5) and 25-hydroxy-26-(2,2′-biphenyldioxyphosphinoxy)-27,28-dipropyloxy- p-tert-butyl calix[4]arene (6) have been synthesized. Treatment of (allyl) palladium precursors [(η3-1,3-R,R′-C3H4)Pd(Cl)]2 with ligand 3 in the presence of NH4PF6 gives a series of cationic allyl palladium complexes (3a-3d). Neutral allyl complexes (3e-3g) are obtained by the treatment of the allyl palladium precursors with ligand 3 in the absence of NH4PF6. The cationic allyl complexes [(η3-C3H5)Pd(4)]PF6 (4a) and [(η3-Ph2C3H3)Pd(4)]PF6 (4b) have been synthesized from the proximally (1,2-) substituted bisphosphite ligand 4. Treatment of ligand 4 with [Pd(COD)Cl2] gives the palladium dichloride complex, [PdCl2(4)] (4c). The solid-state structures of [{(η3-1-CH3-C3H4)Pd(Cl)}2(3)] (3f) and [PdCl2(4)] (4c) have been determined by X-ray crystallography; the calixarene framework in 3f adopts the pinched cone conformation whereas in 4c, the conformation is in between that of cone and pinched cone. Solution dynamics of 3f has been studied in detail with the help of two-dimensional NMR spectroscopy.The solid-state structures of the monophosphite ligands 5 and 6 have also been determined; the calix[4]arene framework in both molecules adopts the cone conformation. Reaction of the monophosphite ligands (5, 6) with (allyl) palladium precursors, in the absence of NH4PF6, yield a series of neutral allyl palladium complexes (5a-5c; 6a-6d). Allyl palladium complexes of proximally substituted ligand 6 showed two diastereomers in solution owing to the inherently chiral calix[4]arene framework. Ligands 3, 6 and the allyl palladium complex 3f have been tested for catalytic activity in allylic alkylation reactions.  相似文献   

17.
PN ligands 3 and 4, derived from 2-diphenylphosphanylmethylpyridine 2a, were synthesized, to which in the backbone a tether to a cyclopentadiene system and for comparison an iPr substituent were attached. The chiral compounds were resolved by introduction of a menthoxy substituent into the 2-position of the pyridine system and/or palladium complexes with enantiomerically pure co-ligands. The tripod ligand 3b contains three different binding sites (Cp, P, N) connected by a resolved chiral carbon atom. (SC)-configuration of this tripod ligand enforces (RRh)-configuration at the metal atom in the halfsandwich rhodium complex (LMent,SC,RRh)-7b. The opposite metal configuration is inaccessible. Substitution of the chloro ligand in (LMent,SC,RRh)-7b by halide (Br, I) or pseudohalide (N3, CN, SCN) ligands occurs with retention of configuration to give complexes 8b-11b. However, in the reaction of (LMent,SC,RRh)-7b with PPh3 the pyridine arm of the tripod ligand in compound 13b becomes detached from the metal atom. In the Cp*Rh and CpRh compounds of the bidentate PN ligands 4a and 4b both metal configurations are accessible and in complexes 14a-17a and 14b-17b they equilibrate fast. The stereochemical assignments are corroborated by 9 X-ray analyses.  相似文献   

18.
Neutral complexes of the formula PtCl2L2 (where L = diethyl 2-diphenylphosphino-benzylidene-malonate (1), diisopropyl 2-diphenylphosphino-benzylidene-malonate (2), di-tert-butyl 2-diphenylphosphino-benzylidene-malonate (3), methyl E-2-(2′-diphenylphosphinophenyl)-acrylate (4), tert-butyl E-2-(2′-diphenylphosphinophenyl)acrylate (5)) were prepared. These complexes proved to be excellent precursors to active catalysts for the hydroformylation of styrene. The platinum-containing catalytic systems prepared from malonate-based ligands 1 and 2 provided the highest activity. Chemoselectivities of up to 87% were obtained, while the two aldehyde regioisomers were formed in almost equimolar ratio. The in situ studies by using lower ligand to Pt ratios resulted in slight decrease in both regio- and chemoselectivities.31P NMR studies on the PtCl2L2 complexes revealed that the formation of trans isomers is highly preferred in the case of benzylidene malonate-type ligands with two ester functionalities (1-3) probably due to steric hindrance. A mixture of cis/trans geometrical isomers (on the Pt) with a predominance of the trans isomer was formed when acrylate-type ligands with one ester functionality (4 and 5) were used.  相似文献   

19.
Six p-(1-adamantyl)calix[4]arenes 7, 8 with four differently attached diphenyl-carbamoylmethylphosphine oxide (CMPO) functions at the narrow rim were synthesized. This series was extended by adamantylcalix[4]arenes with two CMPO and two ester, acid or (diethylphosphono)acetylamino groups. Structures of new compounds were proved by NMR, mass-spectrometry and a single-crystal X-ray analysis for the intermediate di-phthalimide 103. The extraction studies towards selected lanthanides and thorium showed that the ligands 7 surpassed the corresponding p-H, p-tert-butyl and p-tert-octyl analogues 3-5 in lanthanide extraction while thorium was extracted with the same or lesser extent. For the lanthanide extraction DLn(74)>DLn(73)≈DLn(72), which follows the order established earlier for ligands 3-5. Among the tetra-CMPO derivatives of type 8, the ligand 83/4 was the best extractant for which the DLn and DTh values were comparable with those for 74.  相似文献   

20.
The syntheses, structures and ligand conformations of the complexes trans-Cu(L1)2(ClO4)2, (L1 = N-(2-pyrimidinyl)-P,P-diphenyl-phosphinic amide), 1, [trans-Co(L1)2(CH3OH)2](ClO4)2·O(C2H5)2, 2, [trans-Co(L2)2(H2O)2](ClO4)2·2CH3OH, (L2 = N-(2-pyridinyl)-P,P-diphenyl-phosphinic amide), 3, [cis-Co(L2)2(NO3)](NO3), 4, and [Ag(L3)(NO3)(CH3CN)], (L3 = N-(6-methyl-2-pyridinyl)-P,P-diphenyl-phosphinic amide), 5, are reported. The L1 and L2 ligands in the monomeric complexes 1-4 chelate the metal centers through the pyrimidyl/pyridyl nitrogen atoms and the phosphinic amide oxygen atoms, whereas the L3 ligands in complex 5 bridge the metal centers, forming a 1-D zigzag chain. The chelating L2 ligands in complexes 3 and 4 adopt cis conformations and the bridging L3 ligand in complex 5 adopts a trans conformation, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号