首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
This paper presents the solution of the linear hydroelastic problem for steady forced vibrations of a semi-infinite ice cover under the effect of localized external load. The ice cover is simulated by a viscoelastic thin plate, the thickness of the fluid layer is assumed to be small, and the shallow water theory is used. The fluid is limited by a solid vertical wall, and the rectilinear edge of the elastic plate adjacent to the wall can be both free and clamped. The solution is obtained with the help of the Fourier integral transform. The behavior of the ice cover is studied depending on the frequency of the external load and boundary conditions on the edge of the plate. It is shown that, in the case of a free edge of the plate, there are considerable deflections on the edge, which could be comparable with deflections at the center of the pressure impact region. It is established that, due to the existence of wave movements of the type of edge waves, the external load energy is transferred to larger distances along the free edge, and there are significant bending moments on the edge of the clamped plate, which can lead to fracture of the ice cover with sufficiently great intensity of the external load.  相似文献   

2.
Natural vibrations localized at the free edge of a semiinfinite, elastic, orthotropic, circular cylindrical shell of open profile are studied. The cylinder is hinged along the bounding generatrices. Dispersion equations are derived from the classical equations describing the dynamic equilibrium for orthotropic cylindrical shells. It is established that these dispersion equations and the dispersion equations for a semiinfinite orthotropic plate strip are in an asymptotic relationship. A procedure for analysis of the possible types of vibrations at the free edge of the cylinder is described. Approximate values of the dimensionless natural frequency and damping factor are determined for shells of different radii  相似文献   

3.
We present a systematic analysis of the eigenvalue problem associated with free vibrations of a finite piezoelectric body. The analysis is based on an abstract formulation of the three-dimensional theory of piezoelectricity. A series of fundamental properties of free vibrations of a piezoelectric body are proved concisely. The problem of free vibrations of a piezoelectric plate governed by the two-dimensional plate equations due to Mindlin is treated in a similar manner.Address after September 1, 1994: Department of Mechanical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.Address after August 16, 1994: Clifton Garvin Professor, Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.  相似文献   

4.
The effect of boundary condition nonlinearities on free nonlinear vibrations of thin rectangular plates is analyzed. The method for analysis of the plate vibrations with geometrical nonlinearity and the boundary condition nonlinearity is suggested. The nonlinear boundary conditions for membrane forces are transformed into linear ones using the in-plane stress function. Additional boundary conditions for the in-plane displacements vanishing on the clamped edge of the plate are imposed on the stress function. Simply supported and cantilever plates are analyzed. The backbone curves obtained by satisfying linear and nonlinear boundary conditions are compared. It is shown that the results of the calculations with nonlinear boundary conditions differ essentially from the data obtained without these boundary conditions.  相似文献   

5.
The double plate system with a discontinuity in the elastic bonding layer of Winker type is studied in this paper. When the discontinuity is small, it can be taken as an interface crack between the bi-materials or two bodies (plates or beams). By comparison between the number of multifrequencies of analytical solutions of the double plate system free transversal vibrations for the case when the system is with and without discontinuity in elastic layer we obtain a theory for experimental vibration method for identification of the presence of an interface crack in the double plate system. The analytical analysis of free transversal vibrations of an elastically connected double plate systems with discontinuity in the elastic layer of Winkler type is presented. The analytical solutions of the coupled partial differential equations for dynamical free and forced vibration processes are obtained by using method of Bernoulli’s particular integral and Lagrange’s method of variation constants. It is shown that one mode vibration corresponds an infinite or finite multi-frequency regime for free and forced vibrations induced by initial conditions and one-frequency or corresponding number of multi-frequency regime depending on external excitations. It is shown for every shape of vibrations. The analytical solutions show that the discontinuity affects the appearance of multi-frequency regime of time function corresponding to one eigen amplitude function of one mode, and also that time functions of different vibration basic modes are coupled. From final expression we can separate the new generalized eigen amplitude functions with corresponding time eigen functions of one frequency and multi-frequency regime of vibrations. The English text was polished by Keren Wang.  相似文献   

6.
The natural frequencies, complex modes and critical speeds of an axially moving rectangular plate, which is partially immersed in a fluid and subjected to a pretension, are investigated. The effects of free surface waves, compressibility and viscidity of the fluid are neglected in the analysis. The subsection functions are used to describe the discontinuous characteristics of the system due to partial immersion. The classical thin plate theory is adopted to formulate the equations of motion of a vibrating plate. The velocity potential and Bernoulli's equation are used to describe the fluid pressure acting on the moving plate. The effect of fluid on the vibrations of the plate may be equivalent to the added mass on the plate. The effects of distance ratio, moving speed, immersed-depth ratio, boundary conditions, stiffness ratio and aspect ratio of the plate as well as the fluid-plate density ratios on the free vibrations of the moving plate-fluid system are investigated.  相似文献   

7.
The interaction of time harmonic antiplane shear waves and multiple cracks embedded in a plate is studied by using the dislocation model and images method. The effect of the wave number, incident angle and relative positions of the cracks and free surface are presented. Resonance vibrations and the relaxation phenomenon of the layer between the cracks and the free surface are discussed in detail. With the approach, the strain energy density factors (SEDFs) of edge cracks can also be derived by assuming one of the crack tips to be nearly in contact with the free surface.  相似文献   

8.
In this study, we consider the problem of nonlinearly tapered annular plate with a free edge. The supported edge may be simply supported, clamped or elastically restrained against rotation. Exact expressions of deflection, moment-resultants, and stresses are presented for nonuniform thickness. We compare the results of the Kirchhoff plate theory and the Mindlin plate theory. It is shown that the Kirchhoff plate theory and the Mindlin plate theory provide approximately the same results for the positive values of the thickness factor, but the difference between the deflections diverges as the thickness increases at the inner edge. We also propose that the Kirchhoff plate theory may be used in the region of −0.4 ≤ α < 1 and the Mindlin plate theory must be used for α < −0.4.  相似文献   

9.
The problem of surface wave diffraction on a floating elastic plate is considered. The relation between the parameters of the elastic vibrations of the plate and the transmitted and reflected wave amplitudes is investigated. It is shown that the maximum amplitudes of the plate stresses and deflections depend nonmonotonically on the incident wave frequency and are reached simultaneously with the maxima of both the transmission coefficient and the length of the wave penetrating into the plate. This makes it possible to use the transmission coefficient as a parameter for investigating the maximum and minimum amplitudes of the hydroelastic vibrations of the plate. As an example, this criterion is used to minimize the vibrations of a plate whose leading edge is elastically connected to the bottom.  相似文献   

10.
本文分析了各向同性封闭圆柱壳的非线性自由振动。文中采用经典的非线性弹性力学方法推导了圆柱壳的大振幅运动方程,这些方程的静态形式与冯·卡门的板理论方程具有同样的精度。文中讨论了四种基本振动模态,并且还以数学公式的形式给出了一般的最终结果,一些例子以曲线给出结果,并进行了比较。结果还表明线性振动可以作为非线性振动的一种特例。  相似文献   

11.
The paper deals with dynamic response of a thin-walled rectangular plate subjected to in-plane pulse loading. The plate is made of orthotropic (fibre composite) material in which the principal directions of orthotropy are parallel to the plate edges. The plate is characterised by a widthwise varying fibre volume fraction. The structures are assumed to be simply supported at the loaded ends and at non-loaded ends with five different boundary conditions (both simply supported, both fixed, simply supported fixed, simply supported free edge, fixed free edge). In order to obtain the equations of motion the non-linear theory of orthotropic thin-walled plates has been modified in such a way that it additionally accounts for all components of inertial forces. The differential equations of motion have been obtained from Hamilton’s Principle. The problem of nonlinear static stability was solved with the second order of the Koiter’s asymptotic stability theory of conservative systems. The results obtained from analytical–numerical method were compared with the results from finite element method (FEM).  相似文献   

12.
弹性半空间地基上预应力中厚矩形板的弯曲   总被引:1,自引:0,他引:1  
基于Reissner-Mindlin一阶剪切变形理论,讨论在预加面内机械荷载或预加温度场作用下,弹性半空间地基上四边自由中厚矩形板的弯曲问题。把地基看作三维弹性半空间体,考虑地基变形的衰减。用一组数学上完备的二元多项式作为位形函数,采用pb-2 Rayleigh-Ritz法求得四边自由中厚矩形板的挠度和弯矩,并讨论了初应力对板的挠度和弯矩的影响。  相似文献   

13.
The exact solution of the bending of a thick rectangular plate with three clamped edges and one free edge under a uniform transverse load is obtained by means of the concept of generalized simply-supported boundary[1] in Reissner’s theory of thick plates. The effect of the thickness h of a plate on the bending is studied and the applicable range of Kirchhoffs theory for bending of thin plates is considered.  相似文献   

14.
The three-dimensional problem of steady-state forced vibrations of fluid and semiinfinite ice sheet under the action of a local external load traveling along the rectilinear sheet edge at a constant velocity is considered. Two cases are analyzed. In the first case the fluid surface outside the ice sheet is free and in the second the fluid is confined by a rigid vertical wall and the ice sheet edge adjacent to the wall can be both clamped and free. The ice sheet is simulated by a thin elastic isotropic plate floating on the surface of fluid of finite depth. The load traveling velocity is assumed to be not higher than the minimum phase velocity of the flexural-gravity waves (subcritical regime). The solution to the linear problem is obtained by means of the integral Fourier transform and matching the expansions of the velocity potential in the vertical eigenfunctions. Examples of the numerical investigation of the ice sheet and fluid displacements are given.  相似文献   

15.
常海啸  聂国华 《力学季刊》2015,36(4):627-635
采用弹性理论并结合边界摄动技术,对带中心圆孔的适度椭圆薄板的自由振动基频进行了分析.当薄板的内边界受弹性约束,外边界为自由,导出了自由振动基频的解析解.同时,利用ANSYS软件进行了数值模拟,通过经典边界条件下基频结果的对比,验证了基于本文理论解的计算结果的精确性.本方法可以有效用于处理具有曲线边界的薄板结构的自由振动问题.  相似文献   

16.
We prove the duality of solutions for the problem of determining the boundary conditions on two opposite sides of a rectangular plate from the frequency spectrum of its bending vibrations. A method for determining the boundary conditions on two opposite sides of a rectangular plate from nine natural frequencies is obtained. The results of numerical experiments justifying the theoretical conclusions of the paper are presented. Rectangular plates are widely used in various technical fields. They serve as printed circuit boards and header plates, bridging plates, aircraft and ship skin, and parts of various mechanical structures [1–4]. If the plate fixing cannot be inspected visually, then one can use the natural bending vibration frequencies to find faults in the plate fixing. For circular and annular plates, methods for testing the plate fixing were found in [5–7], where it was shown that the type of fixing of a circular or annular plate can be determined uniquely from the natural bending vibration frequencies. The following question arises: Is it possible to determine the type of fixing of a rectangular plate on two opposite sides of the plate from the natural bending vibration frequencies if the other two sides are simply supported? Since the opposite sides of the plate are equivalent to each other, a plate with “rigid restraint—free edge” fixing will sound exactly the same as a plate with “free edge—rigid restraint” fixing. Hence we cannot say that the type of fixing of a rectangular plate on two opposite sides can be uniquely determined from its natural bending vibration frequencies. But it turns out that we can speak of duality in the solution of this problem. Here we observe an analogy with the problem of determining the rigidity coefficients of springs for elastic fixing of a string [8]: the rigidity coefficients of the springs are determined by the natural frequencies uniquely up to permutations of the springs.  相似文献   

17.
The natural vibrations of a cantilever thin elastic orthotropic circular cylindrical shell are studied. Dispersion equations for the determination of possible natural frequencies of cantilever closed shells and open shells with Navier hinged boundary conditions at the longitudinal edges are derived from the classical dynamic theory of orthotropic cylindrical shells. It is proved that there are asymptotic relationships between these problems and the problems for a cantilever orthotropic strip plate and for a cantilever rectangular plate and the eigenvalue problem for a semi-infinite closed orthotropic cylindrical shell with free end and for the same but open shell with Navier hinged boundary conditions at the longitudinal edges. A procedure to identify types of vibrations is presented. Orthotropic cylindrical shells with different radii and lengths are used as an example to find approximate values of the dimensionless natural frequency and damping factor for vibration modes __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 5, pp. 68–91, May 2008.  相似文献   

18.
厚圆板轴对称振动的弹性力学解   总被引:2,自引:0,他引:2  
徐旭  何福保 《力学季刊》2000,21(1):59-65
本文以轴对称三维弹性力学基本方程为基础,导出厚圆板强迫振动的状态方程式。利用Maclaurin级数和Sylvester定理,厚圆板的位移和应力可以用中面位移和应力的微分算子表示。通过载荷分解和圆板表面条件,可以得到厚圆板在对称载荷与反对称载荷作用下的振动控制方程。求解了厚圆板在周边固支和简支条件下的对称与反对称的自由振动问题。通过数值计算得到了这两类自由振动的固有频率。本文的方法适用于求解厚圆板在  相似文献   

19.
The problem of vibrations of an ice sheet with a rectilinear crack on the surface of an ideal incompressible fluid of finite depth under the action of a time-periodic local load is solved analytically using the Wiener–Hopf technique. Ice cover is simulated by two thin elastic semi-infinite plates of constant thickness. The thickness of the plates may be different on the opposite sides of the crack. Various boundary conditions on the edges of the plates are considered. For the case of contact of plates of the same thickness, a solution in explicit form is obtained. The asymptotics of the deflection of the plates in the far field is studied. It is shown that in the case of contact of two plates of different thickness, predominant directions of wave propagation at an angle to the crack can be identified in the far field. In the case of contact of plates of the same thickness with free edges and with free overlap, an edge waveguide mode propagating along the crack is excited. It is shown that the edge mode propagates with maximum amplitude if the vertical wall is in contact with the plate. Examples of calculations are given.  相似文献   

20.
The present work deals with the influence of initial geometric imperfections on the dynamic behavior of simply supported rectangular plates subjected to the action of periodic in-plane forces. The nonlinear large-deflection plate theory used in this analysis corresponds to the dynamic analog of von Karman's theory. The temporal response is analyzed by the first-order generalized asymptotic method. The solution for the temporal equations of motion takes into account the possibility of existence of simultaneous forced and parametric vibrations. The results indicate that the presence of initial imperfections may significantly raise the resonance frequencies, cause the plate to exhibit a soft spring behavior and improve slightly the stability of the plate by reducing the area of its instability zones. Furthermore, the presence of initial imperfections induces forced vibrations which interact with parametric vibrations in order to generate a competitive hesitation phenomenon in the transition zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号