首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《先进技术聚合物》2018,29(4):1294-1302
For the sake of improving the flame retardancy of epoxy resin (EP), a novel phosphorus‐containing phenolic resin (PPR) synthesized in our group instead of conventional phenolic resin (PR) was used to cure EP in the present research. The curing processes and the corresponding crosslinking structure and mechanical performance were investigated by differential scanning calorimeter and dynamic mechanical thermal analysis. Because of the introduction of flame‐retarding elements including P and Si, PPR exhibited higher charring capacity in the condensed phase, which is helpful to construct a char layer of higher quality. Correspondingly, PPR‐cured EP displayed remarkably improved flame retardance as compared to conventional PR‐cured EP through the related evaluations including limiting oxygen index, vertical burning test, and microscale combustion colorimeter. As a multifunction agent, it is believable that PPR possesses potential commercial value to prepare flame‐retardant EP with high performance.  相似文献   

2.
Prepolymers were prepared by the reaction of 3,9-dihydroxyethyl-3′9′-dibenzyl-1,5,7,11-tetraoxaspiro(5,5)undecane with 4,4′-diphenylmethane diisocyanate (MDI) and 1,6-hexa-methylene diisocyanate (HDI). The number-average molecular weights of the prepolymers can be controlled by changing the mole ratios of spiro compound and diisocyanates. Kinetic studies of the cure reaction for the epoxy resin system modified with or without prepolymers were followed by a HLX-1 dynamic torsional vibration apparatus. The results indicated that gel time (tg) and activation energy (Ea) increased as the content of prepolymers in the epoxy resin system increased. A difference with the cure reaction of the pure epoxy resin, the second-order reaction for the epoxy resin modified with the prepolymers, was obtained. Rate constants (k) of the cure reaction are 0.231 min?1 for the epoxy resin, and 0.312 min?1 for the modified epoxy resin. The mechanism of the cure reaction was discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Phenyl bisthioureas: 4,4′-(bisthiourea)diphenylmethane (DTM), 4,4′-(bisthiourea)diphenyl ether (DTE), and 4,4′-(bisthiourea)diphenyl sulfone (DTS) were synthesized and used as curing agents for the epoxy resin diglydicyl ether bisphenol A (DGEBA). Synthesized phenyl bisthioureas were characterized using FT-IR and 1H-NMR analysis. For comparison studies the epoxy system was also cured using the conventional aromatic amine 4,4′-diaminodiphenyl ether (DDE). Curing kinetics of epoxy/amine system was studied by dynamic and isothermal differential scanning calorimeter (DSC). Curing kinetic was evaluated based on model-free kinetics (MFK) and ASTM E 698 model, and the activation energy was compared with DDE. Curing system of phenyl bisthiourea link (DGEBA/DTM, DGEBA/DTE, and DGEBA/DTS) shows two exothermic peaks, while that of the conventional aromatic amines showed only a single peak. The initial exothermic peak is due to the primary nitrogen of the thiourea group, and the exotherm at higher temperature is due to the presence of thiourea groups. Glass transition temperature (T g) of DGEBA/DTM, DGEBA/DTE, and DGEBA/DTS cured resins were lowered by 323 K when compared to the widely used diaminodiphenyl ether (DDE) cured resin. Oxidation induction temperature measurement performed on DSC suggests that the DGEBA/DTM, DGEBA/DTE, and DGEBA/DTS system cured resins has better oxidative stability when compared to cured DGEBA/DDE resin system.  相似文献   

4.
A kind of aromatic diamine, 4′, 4″-(2, 2-diphenylethene-1, 1-diyl)dibiphenyl-4-amine (TPEDA), was successfully synthesized via Suzuki coupling reaction. The TPEDA containing nonplanar rigid moieties can be used as epoxy resins curing agent to improve the complex properties of cured composites. The curing kinetics during thermal processing of E51/TPEDA system was investigated by nonisothermal differential scanning calorimeter. The average activation energy (E α), pre-exponential factor (lnA), and reaction order (n) calculated from the Kissinger, the Ozawa, the Friedman and the Flynn–Wall–Ozawa methods were 55.8 kJ mol?1, 9.4 s?1 and 1.1, respectively. By the aid of estimated kinetic parameters, the predicted heat generation vs temperature curves fit well with the experimental data, which supported the validity of the estimated parameters and the applicability of the analysis method used in this work. By the introduction of nonplanar rigid moieties, the cured epoxy resins with TPEDA exhibited a higher glass transition temperature (T g = 258 °C), good thermal stability (≈395 °C at 10 % mass-loss), and high char yield (36.6 % at 700 °C under nitrogen) compared with conventional curing agents.  相似文献   

5.
In this study, the authors study by calorimetry the influence of hyperbranched polyester Boltron®H40 on the thermal curing and the photocuring of a diglycidyl ether of bisphenol epoxy resin (DGEBA) using ytterbium (III) trifluoromethanesulfonate and triarylsulfonium hexafluorantimonate as thermal and photo cationic initiators, respectively. In the dynamic thermal curing at different heating rates, the authors have seen a decelerating effect when H40 is added to DGEBA, the system with 10% of H40 being the slowest. An isoconversional method has been used to determine the apparent activation energy of the thermal curing. In the isothermal photocuring at low temperatures, the authors have also appreciated a decelerating effect on adding H40, obtaining a minimum conversion when the H40 proportion is 15%. However, at high temperatures, the photocuring process can be accelerated at the first part of this process. This behavior is a consequence of the temperature dependence of H40 solubility in DGEBA, the viscosity of the system, and the hydroxyl-induced chain-transfer reaction. The values found of the maximum glass transition temperature in the thermal curing and in the photocuring, show that H40 is not completely solubilized in the reacted system.  相似文献   

6.
Within Martin Marietta's Analytical Services Organization (ASO), epoxy samples have traditionally been analyzed by high performance ion chromatography (HPIC) using a bomb-prep method. Erratic sulfate results prompted an experimental 10% methanol preparation dissolution method to be used with subsequent analysis by HPIC. An HPIC method with isocratic separation and micro membrane suppression is discussed in this paper. This method is specifically for the determination of sulfur as sulfate and fluoride in an epoxy curing agent. The new method will be used as a replacement for a current production laboratory bomb-prep HPIC method. Matrix interferences caused by Parr bomb (see Oxygen Combustion Bombs, Bulletin 1100, Parr Instrument, Moline, IL, USA) combustion product were eliminated using this method. A precision and bias study was done to document the effectiveness of the new method.  相似文献   

7.
8.
Two novel phosphorus‐containing Mannich‐type bases, [(2‐{[(diethoxy‐phosphoryl)‐phenyl‐methyl]‐amino}‐ ethylamino)‐phenyl‐methyl]‐phosphonic acid diethyl ester (PEDA) and ({2‐[2‐(2‐{[(diethoxy‐phosphoryl)‐phenyl‐methyl]– amino}‐ethylamino)‐ethylamino]‐ethylamino}‐phenyl‐methyl)‐phosphonic acid diethyl ester (PTTA) were prepared and employed as curing agents in an attempt to prepare flame retardant epoxy systems. Through a curing reaction, phosphorus was incorporated in the backbone of the epoxy polymer. The processing characteristic of these systems was studied in terms of gel time at different temperatures. Thermal and flame retardancy properties of the cured epoxy thermosets were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and flammability test. The degradation activation energy was calculated by Kissinger's model. The results showed that the gel time of the phosphorus‐containing epoxy systems was prolonged; the glass transition temperature (Tg) was increased due to the introduction of phosphorus and the initial degradation activation energy of phosphorus‐containing epoxy systems was lower than phosphorus‐free epoxy systems. High char yield (23–27 wt%) and limiting oxygen index (LOI) values of 28–30 were observed for the phosphorus‐containing epoxy thermosets, indicating their improvement in flame retardancy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
A phosphorus-nitrogen reactive flame retardant curing agent poly-(isophorondiamine spirocyclic pentaerythritol bisphosphonate) (PIPSPB) was synthesized. The chemical structure of the obtained compound was identified by FTIR, 1HNMR, and mass spectroscopies. Different proportions of DDS and PIPSPB were compounded as the curing agents to prepare a series of flame retardant epoxy resins with different phosphorus contents. The curing behavior of E-44/PIPSPB?+?DDS system was studied by DSC. A series of tests were conducted to characterize E-44/PIPSPB?+?DDS thermosetting system’s performance. The result demonstrates that the residual carbon content of EP/PIPSPB?+?DDS system is obviously higher than that of EP/DDS system after 500?°C with the increase of phosphorus content in the system, and the heat release rate of the system during combustion is significantly reduced. The generated phosphorus-containing carbon layer is obviously foamed, which shows that the flame retardancy of the system is the result of the combined action of condensed phase and gas phase. When the phosphorus content is 1.77wt%, EP-3 successfully passed UL94 V-0 flammability rating, the LOI value was as high as 29%, the impact strength and tensile strength of it were 6.08KJ/m2 and 49.10MPa respectively, the adhesive strength could reach 13.89?MPa, the system presents a good overall performance.  相似文献   

10.
用FTIR定量研究环氧树脂固化反应动力学制样方法的确定   总被引:2,自引:0,他引:2  
利用FTIR进行环氧树脂固化反应的动力学研究需要精确的样品制备方法,摸索到一套合适的样品制备方法。将KBr研成细粉,通过孔径为0.074mm筛子使粒子均匀,在120~150℃下加热24h后,取0.25g,放入红外压片模具,在压力为800MPa条件下加压时间5~10min,压制成厚度为0.08mm的透明均匀KBr盐片。将环氧树脂均匀涂在这种KBr盐片上,放入微型反应器中反应,之后一同放入FTIR仪中进行扫描,实验证明这种制样方法可以保证红外定量分析的可靠性。  相似文献   

11.
Microencapsulation of Bistetrazol · diammonium (BHT · 2NH3) as a hydrophilic powdery flame retardant was tried by the interfacial reaction method in reverse emulsion. In this microencapsulation method, water droplets containing BHT · 2NH3 and hydrazine as gelation agent for epoxy resin were dispersed in the continuous phase of corn oil. When epoxy resin was added to the continuous phase, BHT · 2NH3 as a core material was microencapsulated by the reaction of epoxy resin with hydrazine on the interface between the surface of water droplet and the continuous phase. The content of the core material from 70 to 85%, and the microencapsulation efficiency from 89 to ca 100% were able to be attained under the experimental conditions adopted here. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
13.
In the present study, dynamic differential scanning calorimetry has been used to investigate the effect of an alkali lignin in amounts up to 20% by weight, on the crosslinking kinetics of an epoxy prepolymer cured with an aliphatic polyamine. Lignin presence does not significantly affect the overall reaction order, but the activation energy increases and the slowing of the overall curing process with lignin content could be explained by the interaction between lignin and the polyamine hardener. The possibility of having a “false compensation” in the case of the use of single DSC scans is also discussed.  相似文献   

14.
A new epoxy resin (Bis-ENA) containing naphthalene structure linked with a 1,4-bis(isopropylidene)phenylene was synthesized and was confirmed by elemental analysis, infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. To estimate the effect of naphthalene moiety on the cured polymer, an epoxy resin (Bis-EP) having phenyl moiety was synthesized, and curing behaviors of Bis-ENA and Bis-EP with phenol novolac were evaluated by differential scanning calorimetry. The incorporation of naphthalene structure into the resin backbone increased the curing temperature and reduced the curing reactivity. Thermal properties of the cured polymers obtained from Bis-ENA and Bis-EP with phenol novolac were examined by thermomechanical analysis and dynamic mechanical analysis. Mechanical properties and moisture resistance were evaluated by flexural strength, flexural modulus, and moisture absorption measurements. The cured polymer obtained from Bis-ENA showed higher glass transition temperature, higher flexural modulus, lower thermal expansion, and lower moisture absorption than that from Bis-EP. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3063–3069, 1999  相似文献   

15.
A new type of epoxy resin containing 4,4′-diphenylether moiety in the backbone (2) was synthesized, and was confirmed by gel permeation chromatography, infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. In addition, in order to evaluate the influence of 4,4′-diphenylether moiety in the structure, epoxy resins having 4,4′-biphenylene moiety (4) and having 1,4-phenylene moiety (6) in place of 4,4′-diphenylether moiety were synthesized. The cured polymer obtained through the curing reaction between the new diphenylether-containing epoxy resin and phenol novolac was used for making a comparison of its thermal and physical properties with those obtained from 4, 6, and bisphenol-A (4,4′-isopropylidenediphenol) type epoxy resin. The cured polymer obtained from 2 showed markedly higher anaerobic char yield at 700°C of 44.0 wt %, higher fracture toughness, and higher mechanical strength and modulus. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3687–3693, 1999  相似文献   

16.
Polyaniline sulfate‐zeolite composite was prepared by emulsion polymerization. Epoxy resin was cured using polyaniline‐sulfate salt and various amounts of polyaniline sulfate‐zeolite composite. The kinetics of the cure reaction for an epoxy resin based on the diglycidyl ether of bisphenol A (DGEBA) with polyaniline‐sulfate and polyaniline sulfate‐zeolite composite have been studied using differential scanning calorimetry (DSC) under isothermal and dynamic conditions. Isothermal kinetics analysis was performed using the phenomenological model of Kamal. Dynamic kinetic analysis was performed using Kissinger's method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Three novel cardanol‐based phenalkamines with good stability have been successfully prepared by Mannich reaction using phenolic compounds with paraformaldehyde and hexamethylenediamine (or its mixture with other amines). The structure of the prepared phenalkamines has been analyzed using liquid chromatography‐mass spectrometry, nuclear magnetic resonance, and Fourier transform infrared spectroscopy. The curing kinetics of the prepared epoxy resin/phenalkamine systems has been investigated using differential scanning calorimetry (DSC), and determined by Kissinger, Flynn–Wall–Ozawa, and Crane methods. Furthermore, the thermal properties of the cured materials have been evaluated using DSC and thermogravimetric analysis, and the mechanical properties of the cured materials have been analyzed systematically. The results demonstrate that the phenalkamine 1 (PAA1) had a lower reactivity and better toughness than phenalkamine 2 (PAA2) and phenalkamine 3 (PAA3). In addition, PAA1 is a solid curing agent, while PAA2 and PAA3 are liquid curing agents, which were more convenient for practical usage. Results indicate that the properties of the prepared phenalkamines strongly depend on the structures. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 472–480  相似文献   

19.
It has been shown that incorporation of masked isocyanates in the MY720/DDS epoxy significantly reduces the equilibrium moisture absorption by blocking of residual functional groups ( oxirane group) by the isocyanates released in the deblocking reaction of the masked isocyanates. We have now used high resolution 13C-CP/MAS NMR to follow the reactions in the solid state and to identify intermediates and by-products. The deblocking reaction of the masked isocyanates also releases the corresponding alcohol, part of which may evaporate during the curing reaction. The resolution in the solid-state spectra is good enough to identify all the reactants and the intermediates involved in the curing reaction. Difference spectra are used to emphasize changes between systems that differ in treatment or composition.  相似文献   

20.
A new type of self-oscillating polymer was prepared by utilizing the Belousov-Zhabotinsky reaction. In this study, capture sites with a positive charge for an oxidizing agent as a counterion were incorporated into the copolymer of N-isopropylacrylamide and the ruthenium complex as a catalyst. Soluble-insoluble self-oscillation of the polymer was first achieved without adding an oxidizing agent. The effect of temperature on the self-oscillating behavior was investigated. It was clarified that the polymer had two advantageous characteristics because of the higher LCST; one is to enable self-oscillation around body temperature, and the other is to cause the oscillation for a longer time without intermolecular aggregation among the polymer chains in the reduced state. This achievement of self-oscillation of polymer chains including an oxidizing agent may lead to their practical use under oxidant-free conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号