首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of coupling anion-exchange high-performance liquid chromatography, hydride generation and atomic fluorescence spectrometry (HPLC–HG–AFS) for arsenic speciation is considered. The effects of hydrochloric acid and sodium tetrahydroborate concentrations on signal-to-background ratio, as well as argon and hydrogen flow rates, were investigated. Detection limits for arsenite, dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and arsenate were 0.17, 0.45, 0.30 and 0.38 μg l−1, respectively, using a 20-μl loop. Linearity ranges were 0.1–500 ng for As(III) and MMA (as arsenic), and 0.1–800 ng for DMA and As(V) (as arsenic). Arsenobetaine (AsB) was also determined by introducing an on-line photo-oxidation step after the chromatographic separation. In this case the limits of detection and linear ranges for the different species studied were similar to the values obtained previously for As(V). The technique was tested with a human urine reference material and a volunteer's sample. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
Optimization of HPLC-ICP-AES for the determination of arsenic species   总被引:2,自引:0,他引:2  
High performance liquid chromatography coupled to ICP-AES detection provides a rapid, reliable and sensitive method for arsenic speciation. The separation of As(III), As(V), DMA and MMA was achieved with ion exchange chromatography coupled to an axially-viewed sequential ICP-AES. After optimization of the chromatographic parameters (pH and concentration of the mobile phase), a careful study of the interface was conducted. Five nebulizers associated to three spray chambers were tested. Response of the ICP to each arsenic species was strongly affected by the selection of the nebulizer and spray chamber, however similar responses were obtained for each arsenic species. Best signal-to-noise ratios were obtained by using a microconcentric nebulizer and a cyclone spray chamber and did not affect the chromatographic resolution. Detection limits better than 10 microg L(-1) were obtained for As(III), DMA, MMA and 20 microg L(-1) for As(V), which is a significant improvement over previously published results.  相似文献   

3.
Ion-pair reverse-phase HPLC-inductively coupled plasma (ICP) MS was employed to determine arsenite [As(III)], dimethyl arsenic acid (DMA), monomethyl arsenic (MMA) and arsenate [As(V)] in Chinese brake fern (Pteris vittata L.). The separation was performed on a reverse-phase C18 column (Haisil 100) by using a mobile phase containing 10 mM hexadecyltrimethyl ammonium bromide (CTAB) as ion-pairing reagent, 20 mM ammonium phosphate buffer and 2% methanol at pH 6.0. The detection limits of arsenic species with HPLC-ICP-MS were 0.5, 0.4, 0.3 and 1.8 ppb of arsenic for As(III), DMA, MMA, and As(V), respectively. MMA has been shown for the first time to experimentally convert to DMA in the Chinese brake fern, indicating that Chinese brake fern can convert MMA to DMA by methylation.  相似文献   

4.
Microcolumn high pressure liquid chromatography (micro-HPLC) is rapidly gaining recognition as a practical separation tool for organometallic compounds. The use of the inductively coupled plasma (ICP) as a detector for micro-HPLC is studied. Several miniaturized glass-frit nebulizers are investigated as interfaces between the output of the microbore column and the ICP torch. Their performance with aqueous and methanolic solutions is evaluated by direct nebulization and flow injection analysis. The most efficient of these nebulizers is used in the micro-HPLC/ICP study of some Cd, Pb, and Zn organometallic compounds. Detection limits of 1.92 ng of Pb for tetramethyllead and 5.01 ng of Pb for tetraethyllead are obtained and compared with regular HPLC/ICP of these same compounds. Approximately equivalent detection limits were obtained when using a microwave induced plasma as an alternate plasma source.  相似文献   

5.
Pacey GE  Ford JA 《Talanta》1981,28(12):935-938
As(III), As(V), monomethylarsenic acid (MMA) and dimethylarsenic acid (DMA) were determined by graphite-furnace atomic-absorption spectrophotometry after separation of the species by ion-exchange chromatography. The detection limits (ng/ml) were DMA 0.02, MMA 2.0, As(V) 0.4 and total arsenic 4.0. As(III) was determined by difference. This system gave better detection limits and/or shorter analysis times than previously reported systems.  相似文献   

6.
A method for direct de termination of total in organic arsenic (III+V), arsenic (III) and dimethylarsinate (DMA) in sea water was developed by combining continuous‐flow selective hydride generation and inductively coupled plasma mass spectrometry (ICP‐MS) is presented. The principle underlying selective hydride generation is based on proper control of the reaction conditions for achieving separation of the respective arsenic species. The effects of pH and composition of reaction media on mutual interference between the arsenic species were investigated in detail. The results indicate that the appropriate media for the selective determination of total in organic arsenic, DMA and As(III) are 6 M HNO3, acetate buffer at pH = 4.63 and citrate buffer at pH = 6.54, respectively. The concentrations of total inorganic arsenic species, As(III+V), and As(III) were respectively deter mined and that of As(V) was obtained by the difference between them. As to the concentration of DMA, it was obtained after correction from the interference caused by As(III) and As(V). By following the established procedure, the detection lim its (as based on 3‐sigma criterion) for As(III+V), As(III) and DMA were 0.050, 0.009, and 0.002 ng/mL, respectively. There liability of the pro posed method was evaluated in terms of precision and spike addition. The results indicated that the precision of better than 3% and spike recovery of 95 to 105% for all the arsenic species tested in the natural sea water samples can be obtained.  相似文献   

7.
Some water and soil extracts polluted with arsenic, and a sewage sludge certified for total arsenic have been analysed by high‐performance liquid chromatography–inductively coupled plasma–mass spectrometry (HPLC–ICP–MS) and hydride generation–gas chromatography– quartz furnace atomic absorption spectrometry (HG–GC–QFAAS techniques.) Detection limits in the range of 200–400 and 2–10 ng l−1 respectively allowed the determination of inorganic [As(III), As(V)] and methylated (DMA, MMA, TMAO) arsenic species present in these samples. Results obtained by both methods are well correlated overall, whatever the arsenic chemical form and concentration range (8–10 000 μg l−1). Comparison of these results enabled us to point out features and disadvantages of each analytical method and to reach a conclusion that they are suitable for arsenic speciation in these environmental matrices. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Nakazato T  Tao H  Taniguchi T  Isshiki K 《Talanta》2002,58(1):121-132
This paper describes a robust and sensitive method for the determination of arsenic species in seawater by ion-exclusion liquid chromatography (LC) combined with inductively coupled plasma mass spectrometry (ICP-MS) using reaction cell and hydride generation (HG) techniques. A good separation of arsenite, arsenate, and monomethylarsonic acid was achieved using an ion-exclusion column packed with a sulfonated polystyrene resin and a dilute nitric acid at pH 2.0 as the eluent, even when a large volume, i.e. 200 mul, of seawater samples containing a large amount of matrix was repeatedly injected. Separations of the chloride ion due to the matrix and arsenic species were partially performed; however, the extensive peak of ArCl due to high content of Cl(-) in a sample overlapped peaks of the three arsenic species on (75)As measurement by ICP-MS. This ArCl polyatomic interference was efficiently eliminated by collision of ArCl molecules with helium in an octopole reaction cell which was introduced prior to a mass spectrometer. Detection limits of the three arsenic species in a sample containing 2% Cl(-), the concentration of which is comparable to that in a seawater sample, by LC-ICP-MS with the octopole reaction system (ORS), ranged from 21 to 25 pg As ml(-1); these values were three-six times lower than those by LC-ICP-MS without ORS. As another technique for ArCl interference elimination, HG prior to ICP-MS was also successfully used not only to reduce the interference but also to improve the detection limits to 3.4-4.5 pg As ml(-1). The developed LC-ICP-ORS-MS and LC-HG-ICP-MS were validated by analyzing a certified reference material (CRM) of seawater. In addition, no serious decrease in analytical performance of present methods was observed in the experimental periods of half a year for LC-ICP-ORS-MS and 1 year for LC-HG-ICP-MS, respectively. The latter method was successfully applied to characterize seasonal variations of three arsenic species in deep seawater and surface seawater.  相似文献   

9.
In this work, dual‐column capillary microextraction (CME) system consisting of N‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilane (AAPTS)‐silica coated capillary (C1) and 3‐mercaptopropyl trimethoxysilane (MPTS)‐silica coated capillary (C2) was developed for sequential separation/preconcentration of arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)] in the extracts of human hair followed by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV‐ICP‐MS) detection with iridium as permanent modifier. Various experimental parameters affecting the dual‐column microextraction of different As species had been investigated in detail. It was found that at pH 9, As(V) and MMA could be quantitatively retained by C1 and only As(III) could be quantitatively retained by C2. With the aid of valve switching, As(V)/MMA(V) retained on C1 and As(III) retained on C2 could be sequentially desorbed by 10 µl of 0.01 mol l?1 HNO3 [for As(V)], 0.1 mol l?1 HNO3 [for MMA(V)] and 0.2 mol l?1 HNO3‐3% thiourea (m/v) [for As(III)], respectively, the eluents were immediately introduced into the Ir‐coated graphite tubes for further ETV‐ICP‐MS detection. With two‐step ETV pyrolysis program, Cl? in the sample matrix could be in situ removed, and the total As in the human hair extracts or digested solution could be interference‐free, determined by ETV‐ICP‐MS. DMA(V) in the human hair extracts was obtained by subtraction of total As in the human hair extracts from other three As species. Under the optimized conditions, the detection limits (3 σ) of the method were 3.9 pg ml?1 for As(III), 2.7 pg ml?1 for As(V), 2.6 pg ml?1 for MMA(V) and 124 pg ml?1 for total As with the relative standard deviations less than 7.0% (C = 0.1 ng ml?1, n = 7), and the enrichment factor was 286, 262 and 260 for As(III), As(V) and MMA(V), respectively. The developed method was successfully applied for the speciation of arsenic in the extracts of human hair. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Investigations using ion trap devices for analytical atomic spectroscopy purposes have focused on the use of an inductively coupled plasma (ICP) ion source with ion trap mass spectrometric (ITMS) detection. Initial studies were conducted with an instrument assembled by simply appending an ion trap as the detector to a fairly conventional ICP/MS instrument, i.e. leaving an intermediate linear quadrupole between the plasma source and the ion trap. The principal advantages found with this system include the destruction of nearly all problematic and typical ICP/MS polyatomic ions (e.g., ArH(+), ArO(+), ArCl(+), Ar(2)(+), etc) and a dramatic reduction of the primary plasma source ion, Ar(+). These results prompted the development of a second-generation plasma source ion trap instrument in which direct coupling of the ICP and ion trap has been effected (i.e. no intermediate linear quadrupole); the same performance benefits have been largely preserved. Initial operation of this instrument is described, characterized, and compared to the originally described ICP/ITMS and conventional ICP/MS systems. In addition, experiments aimed at improving ICP/ITMS sensitivity and selectivity using broadband resonance excitation techniques are described. Finally, the potential for laser optical detection of trapped ions for analytical purposes is speculated upon.  相似文献   

11.
We have developed an on-line digestion device-based on the nano-TiO2-catalyzed photooxidation of arsenic species—for coupling between microbore anion-exchange chromatography (μ-LC) and hydride generation (HG)-inductively coupled plasma mass spectrometry (ICP-MS) systems that can be used for the determination of urinary arsenic species. To maximize the signal intensities of the desired arsenic species, we optimized the photocatalytic oxidation efficiency of the analyte species and developed a rapid on-line pre-reduction process for converting the oxidized species into As(III) prior to HG-ICP-MS determination. Under the optimized conditions for the nano-TiO2-catalyzed photooxidation-i.e., using 1 g of nano-TiO2 per-liter, at pH 5.2, and illuminating for 3 min- As(III), monomethylarsenoic acid (MMA), and dimethylarseinic acid (DMA) can be converted quantitatively into As(V). To attain maximal hydride generation efficiency, 0.5% Na2S2O4 solution, which can reduce As(V) to As(III) virtually instantaneously upon on-line mixing, was added as a pre-reductant prior to performing the HG step. In light of all the HG efficiency of tested arsenicals were improved and a segmented-flow technique was employed to avoid the loss of peak resolution when using our proposed on-line μ-LC-UV/nano-TiO2/HG-ICP-MS, the detection limits for As(III), MMA, DMA, and As(V) were all in the range of sub-microgram-per-liter (based on 3 sigma). A series of validation experiments-analysis of neat and spiked urine samples-indicated that our proposed methods can be applied satisfactorily to the determination of As(III), MMA, DMA, and As(V) in urine samples.  相似文献   

12.
A pre-oxidation procedure which converts arsenite [As(III)] into arsenate [As(v)] was investigated in urinary arsenic speciation prior to on-line photo-oxidation hydride generation with ICP-MS detection. This sample pre-oxidation method eliminates As(III) and As(v) preservation concerns and simplifies the chromatographic separation. Four oxidants, Cl2, MnO2, H2O2 and I3-, were investigated. Chlorine (ClO-aq) and MnO2 selectively converted As(III) into As(v) in pure water samples, but the conversion was inefficient in the complex urine matrix. Oxidation of As(III) by H2O2 was least affected by the urine matrix, but the removal of excess H2O2 at pH 10 proved difficult. The most appropriate oxidant for the selective conversion of As(III) into As(v) with minimal interference from the urine matrix is I3- at pH 7. Unlike H2O2, excess oxidant can be easily removed by the addition of S2O3(2-). The I3-(-)S2O3(2-) treatment on a fortified sample of reconstituted NIST SRM 2670 freeze dried urine indicated that arsenobetaine (AsB), dimethlyarsinic acid (DMA), monomethylarsonic acid (MMA) and As(v) were not chemically degraded with recoveries ranging from 95 to 102% for all arsenicals. Sample clean-up involved pH adjustment prior to C18 filtration in order to achieve efficient As(III) conversion and quantitative recoveries of AsB and DMA. The concentrations determined in NIST SRM 2670 freeze dried urine were AsB 17.2 +/- 0.5, DMA 56 +/- 4 and MMA 10.3 +/- 0.3 with a combined total of 83 +/- 5 micrograms L-1 (+/- 2 sigma).  相似文献   

13.
Inductively coupled plasma mass spectrometry (ICP/MS) is utilized as a detector for several organotin species separated by high-performance liquid chromatography. Detection limits obtained by ICP/MS are 3 orders of magnitude lower than those obtained with inductively coupled plasma atomic emission spectrometry (ICP/AES) detection under the same chromatographic conditions. Chromatographic detection limits are higher than conventional solution nebulization for the same compound by a factor of 20. Ion-exchange chromatography yields linear response over 3 orders of magnitude, while ion pair chromatography gives a linear response of only 2 orders of magnitude as a result of poor resolution. The relative standard deviation for the injection of 20 ng of tin compounds is less than 10%.  相似文献   

14.
Sensitive methods were developed for the analysis of dextromethorphan (I) and two metabolites, (+)-17-methyl-morphinan-3-ol (II) and (+)-morphinan-3-ol (III), in plasma as well as dextromethorphan and three metabolites II, III and (+)-3-methoxymorphinan (IV) in urine using high-performance liquid chromatography followed by detection with a fluorometer. Dextromethorphan and its metabolites were extracted from plasma and urine and separated in the reversed-phase mode. The practical lower limits of determination for I, II, and III in plasma were 0.5, 5, and 5 ng/ml, respectively; for I, II, III, and IV in urine, the limits were 20 ng/ml, 0.6 microgram/ml, 0.5 microgram/ml, and 15 ng/ml, respectively. The linearity of the calibration graphs was excellent (r varied from 0.9994 to 0.9999) over concentration ranges of two orders of magnitude.  相似文献   

15.
白晶  卢秀芬  乐晓春  于波 《色谱》2003,21(6):545-548
应用液相色谱-等离子质谱联用的方法分析食品样品中的主要有机砷(一甲基砷和二甲基砷)和无机砷(三价砷和五价砷)。 采用50%(体积分数)甲醇水溶液作为萃取剂,将食品样品进行预处理,再以5 mmol/L四丁氢铵,2 mmol/L丙二酸和5%(体积分数)甲醇水溶液作为流动相(pH 5.9),C18色谱柱(150 mm×4 mm i.d., 5 μm)将样品萃取液进行液相色谱分离,最后进入等离子质谱仪定性分析。 经测定发现,新鲜蔬菜和水果样品中主要含有的无机砷为三价砷和五价砷,有机砷为二甲基砷。一甲基砷在个别样品  相似文献   

16.
A non-chromatographic, sensitive and simple analytical method has been developed for the determination of toxic arsenic species in vegetable samples by hydride generation-atomic fluorescence spectrometry (HG-AFS). As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were determined by hydride generation-atomic fluorescence spectrometry using a series of proportional equations. The method is based on a single extraction of the arsenic species considered from vegetables through sonication at room temperature with H(3)PO(4) 1 mol L(-1) in the presence of 0.1% (w/v) Triton XT-114 and washing of the solid phase with 0.1% (w/v) EDTA, followed by direct measurement of the corresponding hydrides in four different experimental conditions. The limit of detection of the method was 3.1 ng g(-1) for As(III), 3.0 ng g(-1) for As(V), 1.5 ng g(-1) for DMA and 1.9 ng g(-1) for MMA, in all cases expressed in terms of sample dry weight. Recovery studies provided percentages greater than 91% for all considered species in spiked samples of chards and aubergines. Total toxic As found in the aforementioned samples was at the level of 90 ng g(-1); As(III) is followed by As(V), DMA and MMA which are the main species of As in chards being As(V) the main As compound in aubergines.  相似文献   

17.
Five arsenic species, trimethylarsine oxide, dimethylarsenic acid, monomethylarsonic acid, arsenobetaine and sodium arsenite, in urine were analysed by inductively coupled plasma mass spectrometry with ion chromatography (IC ICP MS). Since the toxicities of different arsenic compounds are different, speciation of arsenic compounds is very important in the investigation of metabolisms. In this paper, we applied ion chromatography (IC) as a separation device and inductively coupled plasma mass spectrometry (ICP MS) as a detection device. For separation of the five arsenic compounds, an anion-exchange column and, as mobile phase, tartaric acid were used. The eluent from the IC column was introduced directly into the nebulizer of the ICP MS and analysed at 75 amu. Detection limits were from 4 to 9 pg as arsenic.  相似文献   

18.
A high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry (HPLC-MW-HG-AAS) coupled method is described for As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB) and arsenocholine (AsC) determination. A Hamilton PRP-X100 anion-exchange column is used for carrying out the arsenic species separation. As mobile phase 17 mM phosphate buffer (pH 6.0) is used for As(III), As(V), MMA and DMA separation, and ultrapure water (pH 6.0) for AsB and AsC separation. Prior to injection into the HPLC system AsB and AsC are isolated from the other arsenic species using a Waters Accell Plus QMA cartridge. A microwave digestion with K(2)S(2)O(8) as oxidizing agent is used for enhancing the efficiency of conversion of AsB and AsC into arsenate. Detection limits achieved were between 0.3 and 1.1 ng for all species. The method was applied to arsenic speciation in fish samples.  相似文献   

19.
A laser ablation system using a Nd:YAG laser was coupled both to a quadrupole inductively coupled plasma (ICP) mass spectrometer and to a double-focusing sector field ICP mass spectrometer. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied for the determination of long-lived radionuclides in a concrete matrix. The investigated samples were two laboratory standards with a concrete matrix, which we doped with different long-lived radionuclides (e.g. 99Tc, 232Th, 233U, 237Np) from the ng g−1 to μ g−1 concentration range and an undoped concrete material (blank). Detection limits for long-lived radionuclides in the 10 ng g−1 range are reached for LA-ICP-MS using the quadrupole mass spectrometer. With double-focusing sector field ICP-MS, the limits of detection are in general one order of magnitude lower and reach the sub ng g−1 range for 233U and 237Np. A comparison of mass spectrometric results with those of neutron activation analysis on undoped concrete sample indicates that a semiquantitative determination of the concentrations of the minor and trace elements in the concrete matrix is possible with LA-ICP-MS without using a standard reference material.  相似文献   

20.
A study was undertaken to develop a method for the chemical speciation of As in rice on the basis of current knowledge in this field for use in preparing a certified reference material (CRM). Samples of the Arborio rice variety were ground to a fine powder, which was extracted under sonication with a water-methanol mixture (1 + 1, v/v). The resulting solutions were injected into a high-performance liquid chromatograph combined on-line with a quadrupole inductively coupled plasma-mass spectrometer. This hyphenated system allowed for the quantification of As species in one analytical step. Four forms of As were detected: inorganic As (III), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), and inorganic As (V) at concentrations of 88.2 +/- 7.1, 50.8 +/- 5.0, 15.2 +/- 1.7, and 51.2 +/- 3.5 ng/g, respectively. The concentration of total As was 211 +/- 7 ng/g. The limits of detection (3sigma criterion) and the quantitation (10sigma criterion) were, respectively, as follows (in ng/g): As (III), 0.095 and 0.320; As (V), 0.082 and 0.273; MMA, 0.110 and 0.367; and DMA, 0.145 and 0.480. Ten hours were needed for the extraction procedure, 6 h for the evaporation, and 30 min for quantification of the analytes. This investigation was performed in the frame of a European Commission Project on the feasibility of CRMs for As and Se species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号