首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The reaction between the 11-vertex rhodathiaborane [8,8-(PPh3)2-nido-8,7-RhSB9H10] (1) and 3-pyridylacetonitrile affords the hydrorhodathiaborane [8,8,8-(PPh3)2H-9-(3-Py-CH2CN)-nido-8,7-RhSB9H9] (2) in good yield. Treatment of this cluster with ethylene leads to the formation of red, [1,1-(PPh3)(η2-C2H4)-3-(3-Py-CH2CN)-closo-1,2-RhSB9H8] (3). Both 11-vertex polyhedral boron-based clusters have been characterized by multielement NMR spectroscopy. In addition, (3) has been analyzed by single-crystal X-ray diffraction analysis and is only the second ethylene-ligated metalla-heteroborane to be characterized in the solid state. The molecular structure of this cluster is based on an octadecahedron. In the crystal lattice, the individual clusters form layers supported by short edge-to-face π-interactions between the phenyl rings of neighboring molecules.  相似文献   

2.
The reaction of [nido-7-SB10H12] with [RhCl(PPh3)3] in the presence of N,N,NN′-tetramethylnaphthalene-1,8-diamine (tmnd) in CH2Cl2 gives twelve-vertex [2,2-(PPh3)2-2-H-closo-2,1-RhSB10H10] (1) and eleven-vertex [8,8-(PPh3)2-nido-8,7-RhSB9H10] (2), as major products, plus the dimeric species [{(PPh3)-closo-RhSB10H10}2] (3) as a minor product. Reaction of 1 with PMe2Ph in CH2Cl2 results in phosphine exchange and hydride substitution, affording the chloro analogue of 1, [2,2-(PMe2Ph)2-2-Cl-closo-2,1-RhSB10H10] (4). By contrast, reaction between [IrCl(PPh3)3] and [nido-7-SB10H12] in CH2Cl2 with tmnd affords only one product, twelve-vertex [2,2-(PPh3)2-2-H-closo-2,1-IrSB10H10] (5). [RhCl25-C5Me5)]2 with [nido-7-SB10H12] under the same conditions gives twelve-vertex [2-(η5-C5Me5)-closo-2,1-RhSB10H10] (6). All the compounds are characterised by NMR spectroscopy, and by mass spectrometry, and the molecular structure of [2,2-(PMe2Ph)2-2-Cl-closo-2,1-RhSB10H10] (4) was established by single-crystal X-ray diffraction analysis. This last rhodathiaborane 4 is fluxional in solution through a process that involves a reversible partial rotation of the {RhCl(PMe2Ph)2} unit above the {SB4} pentagonal face of the {SB10H10} fragment.  相似文献   

3.
The treatment of [1,1‐(PR3)2‐3‐(Py)‐closo‐1,2‐RhSB9H8] (PR3=PMe3 ( 2 ) or PPh3 and PMe3 ( 3 ); Py=pyridine) with triflic acid (TfOH) affords [1,3‐μ‐(H)‐1,1‐(PR3)2‐3‐(Py)‐1,2‐RhSB9H8]+ (PR3=PMe3 ( 4 ) or PMe3 and PPh3 ( 5 )). These products result from the protonation of the 11‐vertex closo‐cages along the Rh(1)? B(3) edge. These unusual cationic rhodathiaboranes are stable in solution and in the solid state and they have been fully characterized by multinuclear NMR spectroscopy. In addition, compound 5 was characterized by single‐crystal X‐ray diffraction. One remarkable feature in these structures is the presence of three {Rh(PPh3)(PMe3)}‐to‐{ηn‐SB9H8(Py)} (n=4 or 5) conformers in the unit cell, thus giving an uncommon case of conformational isomerism. [1,1‐(PPh3)2‐3‐(Py)‐closo‐1,2‐RhSB9H8] ( 1 ), that is, the bis‐PPh3‐ligated analogue of compounds 2 and 3 , is also protonated by TfOH, but, in marked contrast, the resulting cation, [1,3‐μ‐(H)‐1,1‐(PPh3)2‐3‐(Py)‐1,2‐RhSB9H8]+ ( 6 ), is attacked by a triflate anion with the release of a PPh3 ligand and the formation of [8,8‐(OTf)(PPh3)‐9‐(Py)‐nido‐8,7‐RhSB9H9] ( 9 ). The result is an equilibrium that involves cationic species 6 , neutral OTf‐ligated compound 9 , and [HPPh3]+, which is formed upon protonation of the released PPh3 ligand. The resulting ionic system reacts readily with H2 to give cationic species [8,8,8‐(H)(PPh3)2‐9‐(Py)‐nido‐8,7‐RhSB9H9]+ ( 7 ). This reactivity is markedly higher than that previously found for compound 1 and it introduces a new example of proton‐assisted H2 activation that occurs on a polyhedral boron‐containing compound.  相似文献   

4.
A reaction of complexes CoCl2(dppe) (dppe is the 1,2-bis(diphenylphosphino)ethane) or CoCl2(dppp) (dppp is the 1,3-bis(diphenylphosphino)propane) with [K][7,8-nido-C2B9H12] upon reflux in benzene led to the mixed ligand closo-cobaltacarboranes [3,3-(Ph2P(CH2) n PPh2)-3-Cl-closo-3,1,2-CoIIIC2B9H11] (n = 2 and 3, respectively) in moderate yields (34 and 16%). The structure of the 18-electron complexes in solution and the solid state was studied by NMR and IR spectroscopy, the structure in the case of the closo-complex with dppe-ligand was confirmed by X-ray crystallography.  相似文献   

5.
[7,7-(PMe2Ph)2-9-(η6-isoPrC6H4Me)-7,9-PtRuB9H11] has a formal closo Wadian cluster-electron count, but a nido geometry, whereas [1-(η6-isoPrC6H4Me)-4,4-(PMe2Ph)2-1-4-RuPtB9H9], which does have a closo geometry, has a formal sub-closo cluster electron count; both compounds are formed in the reaction between [6-(η6-isoPrC6H4Me)-nido-6 RuB9H13], KH and [PtCl2(PMe2Ph)2].  相似文献   

6.
[PtCl2(PPh3)2]与B10H102-在异丙醇中回流反应, 得到3个巢式十一顶铂十硼烷簇合物: [(PPh3)2PtB10H11-9-O-i-Pr] (1), [(PPh3)2PtB10H10-8,10-(O-i-Pr)2] (2)和[(PPh3)2PtB10H11-8-O-i-Pr] (3). 簇合物13都具有PtB10多面体骨架结构, 其中Pt原子位于敞开的PtB4面上, 且与4个B原子成键, 每个Pt原子还与2个PPh3基团中的P原子成键. 将溶剂热合成的方法引入到硼簇合物的合成中并进行同一反应, 得到2个B10H102-降解的巢式十一顶双铂九硼烷簇合物: [(PPh3)2(μ-PPh2)Pt2B9H6-3,9,11-(O-i-Pr)3] (4)和[(PPh3)2(μ-PPh2)Pt2B9H6-3,9-(O-i-Pr)2-11-Cl] (5). 簇合物45都具有Pt2B9多面体骨架结构, 2个Pt原子位于敞开的Pt2B3面上的相邻位置, 且由一个PPh2基团桥连, 每个Pt原子还与3个B原子和一个PPh3基团中的P原子成键. 通过红外光谱、元素分析、X射线单晶衍射对5个簇合物进行了结构表征.  相似文献   

7.
The reaction of [PtCl2(PPh3)2] with closo‐B10H102? in ethanol under reflux conditions gave two nido 11‐vertex platinaundecaborane clusters: [(PPh3)2PtB10H10‐8,10‐(OEt)2]·CH2Cl2 (1) and [(PPh3)2PtB10H11‐11‐OEt]·CH2Cl2 (2) . A novel B10H102? deboronated nido 11‐vertex diplatinaundecaborane [(µ‐PPh2)(PPh3)2Pt2B9H6‐3,9,11‐(OEt)3]·CH2Cl2 (3) was obtained when the same reaction was carried out under solvothermal conditions. All of these compounds were characterized by infrared spectroscopy, NMR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. Both clusters 1 and 2 have a nido 11‐vertex {PtB10} polyhedral skeleton in which the Pt atom lies in the open PtB4 face. Each Pt atom connects with four B atoms and two P atoms of the PPh3 ligands. Cluster 3 has a nido 11‐vertex {Pt2B9} polyhedral skeleton in which two Pt atoms sit in neighbouring positions of the open Pt2B3 face, bridged by a PPh2 group. Each Pt atom connects three B atoms and a P atom of the PPh3 ligand. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
A tetranuclear gold cluster has been synthesized by the reaction of [Au(PPh3)NO3] with the closo carborane diphosphine 1,2-(PPh2)2-1,2-C2B10H10 in THF, and characterized by elemental analysis, FT-IR, 1H and 13C?NMR spectroscopy and X-ray structure determination. The cluster crystallizes in the triclinic Pī, a?=?15.118(8)?Å, b?=?16.057(9)?Å, c?=?24.284(13)?Å, α?=?80.822(9)°, β?=?79.624(8)°, γ?=?81.938(8)°, Z?=?2, R 1?=?0.0626, wR 2?=?0.1894. A single crystal structure determination showed that four gold atoms form a tetrahedral framework. Among these four gold atoms, two were chelated by two nido carborane diphosphine [7,8-(PPh2)2-7,8-C2B9H10]? anions coming from the degradation of the initial closo ligand 1,2-(PPh2)2-1,2-C2B10H10, while the other two were ligated to two PPh3 groups. The luminescence of this cluster was also investigated in dichloromethane solution at room temperature.  相似文献   

9.
Solvothermal synthesis method has been successfully introduced into the diphosphine carborane system, and two new nickel complexes containing nido-carborane diphosphine ligand [7,8-(PPh2)2-7,8-C2B9H10] with the formula [Ni2(μ-Cl)(μ-OOPPh2){7,8-(PPh2)2-7,8-C2B9H10}2]·CH2Cl2 (1) and [H3O][NiBr2] {7,8-(PPh2)2-7,8-C2B9H10}·C6H6 (2) were obtained by the reactions of 1,2-(PPh2)2-1,2-C2B10H10 with NiCl2·6H2O or NiBr2·6H2O in CH2Cl2 under the solvothermal condition. Both of the two complexes have been characterized by the elemental analysis, FT-IR, 1H and 13C NMR spectroscopy and single crystal X-ray diffraction. The X-ray structure analysis for these two complexes reveals the nido-nature of the carborane diphosphine ligand, indicating that the solvothermal synthesis is an efficient method for the degradation of the closo-carborane diphosphine ligand.  相似文献   

10.
In toluene at reflux temperatures [Ru3(CO)12] and 7-SMe2-nido-7-CB10H12 give the charge-compensated cluster complex [1-SMe2-2,2-(CO)2-7,11-(μ-H)2-2,7,11-Ru2(CO)6-closo-2,1-RuCB10H8] (1) . Treatment of 1 with dppm in THF affords [1-SMe2-2,2-(CO)2-7,11-(μ-H)2-2,7,11-Ru2(μ -dppm)(CO)4-closo-2,1-RuCB10H8] (2) [dppm = bis(diphenylphosphino)methane; THF = tetrahydrofuran]. The latter complex on heating in THF with [ ]F yields the salt [ ][1-SMe-2,2-(CO)2-7,11-(μ-H)2-2,7,11-Ru2(μ -dppm)(CO)4-closo-2,1-RuCB10H8] (3). Reaction of 3 with [AuCl(PPh3)] and Tl[PF6] gives the neutral zwitterionic complex [1-S(Me)Au (PPh3)-2,2-(CO)2-7,11-(μ-H)2-2,7,11-Ru2(μ-dppm)(CO)4-closo-2,1-RuCB10H8] (4). The structures of 1, 3 and 4 were determined by single-crystal X-ray diffraction studies.*Dedicated to Professor F. Albert Cotton on the occasion of his 75th birthday, in appreciation of our long friendship and in recognition of his outstanding contributions to the study of complexes with metal–metal bonds.  相似文献   

11.
《Polyhedron》1987,6(11):1981-1986
Electrophilic deuteration of closo-[1-CB11H12] in the DCl/D2O system confirmed the expected order of reactivity on individual skeletal atoms, decreasing in the series B(12) > B(7–11) > B(2–6) > C(1). In contrast, electrophilic B-substitution of closo-[1-CB11H12] with H2NOSO3H is consistent with the preference of the B(7)-substitution to suggest a different mechanism for almost exclusive formation of 7-H3N-closo-1-CB11H11. 7-Me3N-closo-1-CB11H11 was isolated along with the remaining 2- and 12-Me3N-1-CB11H11 isomers as side products of the thermal decomposition of [BH2(NMe3)2]+[nido-7-CB10H13] at 270°C, which is inconsistent with a specific insertion of the BNMe3 fragment into the open face of nido-[7-CB10H13]. Nevertheless, clean 10B-insertion was observed in the reactions of Et3N10BH3 with both nido-[7-CB10H13] and 7-Me3N-nido-7-CB10H12 to give respectively closo-[1-CB11H12] and [1-Me2N-1-CB11H11] labelled by 10B exclusively at the B(2) site. Cage rearrangement was observed, however, in the reaction of 7-Me3N-8-PhCH2-nido-7-CB10H11 with Et3NBH3 under similar conditions to produce only the 1-Me3N-7-PhCH2-1-CB11H10 closo-isomer.  相似文献   

12.
Chelate exo-nido-ruthenacarboranes exo-5,6,10-[RuCl(Ph2P(CH2)4PPh2)]-5,6,10-(μ-H)3-10-H-7,8-R,R′-nido-7,8-C2B9H6 (R, R′ = H, PhCH2) were synthesized by the direct method using the reaction of Cl2Ru(PPh3)(Ph2P(CH2)4PPh2) with [7,8-R,R′-nido-7,8-C2B9H10][K] in benzene. Unsubstituted exo-nido-ruthenacarborane (R, R′ = H) was used in situ for the synthesis of the dinuclear Ru-Cu exo-closo cluster of the formula exo-closo-(Ph3P)Cu(μ-H)Ru(Ph2P(CH2)4PPh2)(η5-C2B9H11). The isomerism of the complex and the crystal structure were studied by NMR spectroscopy and X-ray diffraction. The catalytic activity of the cluster in the atom transfer radical polymerization of methyl methacrylate was investigated.  相似文献   

13.

Ruthenium(ii) and (iii) carborane complexes containing XantPhos as a ligand were synthesized for the first time. It was shown that the reaction of the known complex exo-5,6,10-[Cl(Ph3P)2Ru]-5,6,10-(µ-H)3-10-H-nido-7,8-C2B9H8 with a 10% molar excess of XantPhos in benzene at 80 °C leads to a new closo-ruthenacarborane 3-Cl-3,3-[x2-XantPhos]-closo-3,1,2-RuC2B9H11, which can be easily converted to the corresponding acetonitrile complex 3-CH3CN-3,3-[x2-XantPhos]-closo-3,1,2-RuC2B9H11 by the reaction with isopropylamine in a dichloromethane—acetonitrile solvent mixture at 40 °C. These compounds, as well as previously synthesized ruthenium(ii) carborane complexes, were used as a basis for new catalyst systems allowing to conduct controlled radical polymerization at high rates even at low catalyst loading. The specific features of methyl methacrylate polymerization under the action of the indicated catalyst systems were considered and the mechanism of the process was investigated.

  相似文献   

14.
New hetero-substituted charge-compensated cobalt bis(1,2-dicarbollide) derivatives were synthesized by the reaction of 8,8′-μ-iodo-3-commo-3-cobalta-bis(1,2-dicarba-closo-dodecaborane) [8,8′-μ-I-3,3′-Co(1,2-C2B9H10)2] with 1,4-thioxane, pyridine N-oxide, and tetrahydropyran. X-ray diffraction studies showed that the 8′-iodo-8-(pyridiniumoxy)eucosahydro-1,1′,2,2′-tetracarba-3-commo-cobalta-closo-tricosaborate molecule has the gauche-conformation (the substituents are turned with respect to each other by 69.2°). The positive charge is predominantly localized on the N(Py) atom.  相似文献   

15.
The molybdacarboranes [3-{L-κ2N,N}-3-(CO)2-closo-3,1,2-MoC2B9H11] (L=2,2′-bipyridine (2,2′-bpy, 1 a ) or 1,10-phenanthroline (1,10-phen, 1 b )) incorporating well-known potentially non-innocent ligands (CO, 2,2′-bpy, 1,10-phen) and the “non-spectator” nido-carborane ([η5-C2B9H11]2−) ligand were prepared and fully characterised. High-resolution mass spectrometry, single-crystal X-ray diffraction methods, spectroscopy (IR, (resonance) Raman, NMR), cyclic voltammetry and spectroelectrochemistry (electrochemical properties) were supported by theoretical investigations of the electronic structure (DFT, CAS-SCF, TD-DFT).  相似文献   

16.
Treatment of [1,1-(PPh3)2-closo-1-RuB10H8-2, 3-(OEt)2]1) 1 with the more basic ligand PMe3 readily results in the displacement of PPh3 to form the hitherto unreported mixed ligand compound [1,1-(PMe3) (PPh3)-closo-1-RuB10H8-2, 3-(OEt)2] 2 , which is characterized by singlecrystal X-ray diffraction analysis. Crystals are monoclinic, space group P21, with a = 1059.2(2), b = 1291.5(2), c = 1187.6(2) pm, β = 91.56(1)°, Z = 4; the final R factor is 0.0198 for 3303 observed reflections [I>2.0 s?(I)]. Compound 2 is also characterized by detailed multielement, multiple resonance, and multidimensional n.m.r. spectroscopy (1H, 1H-{11B}, [1H–1H]{11B}-COSY, 11B, 11B-{1H}, and 31P).  相似文献   

17.
The replacement of the PPh3 ligands in “three-bridge” exo-nido-ruthenacarborane 5,6,10-[RuCl(PPh3)2]-5,6,10-(μ-H)3-10-H-exo-nido-7,8-C2B9H8 with diphosphines, viz., 1,3-bis(diphenylphosphino)propane (dppp) or 1,4-bis(diphenylphosphino)butane (dppb) dramatically decreases the barrier to the thermal exo-nido→closo rearrangement affording the chelate closo-complexes 3,3-[Ph2P(CH2)nPPh2]-3-H-3-Cl-closo-3,1,2-RuC2B9H11 (n = 3 or 4) under mild conditions. In the reaction with dppp, the rearrangement is accompanied by the formation of 17-electron paramagnetic closo-ruthenacarborane 3,3-[Ph2P(CH2)3PPh2]-3-Cl-closo-3,1,2-RuC2B9H11, which could be isolated as the main product when the reaction was carried out at 80 °C. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2455–2459, November, 2005.  相似文献   

18.
The first primary 2‐aminocarba‐closo‐dodecaborates [1‐R‐2‐H2N‐closo‐CB11H10]? (R=H ( 1 ), Ph ( 2 )) have been synthesized by insertion reactions of (Me3Si)2NBCl2 into the trianions [7‐R‐7‐nido‐CB10H10]3?. The difunctionalized species [1,2‐(H2N)2closo‐CB11H10] ( 3 ) and 1‐CyHN‐2‐H3N‐closo‐CB11H10 (H‐ 4 ) have been prepared analogously from (Me3Si)2NBCl2 and 7‐H3N‐7‐nido‐CB10H12. In addition, the preparation of [Et4N][1‐H2N‐2‐Ph‐closo‐CB11H10] ([Et4N]‐ 5 ) starting from PhBCl2 and 7‐H3N‐7‐nido‐CB10H12 is described. Methylation of the [1‐Ph‐2‐H2N‐closo‐CB11H10]? ion ( 2 ) to produce 1‐Ph‐2‐Me3N‐closo‐CB11H10 ( 6 ) is reported. The crystal structures of [Et4N]‐ 2 , [Et4N]‐ 5 , and 6 were determined and the geometric parameters were compared to theoretical values derived from DFT and ab initio calculations. All new compounds were studied by NMR, IR, and Raman spectroscopy, MALDI mass spectrometry, and elemental analysis. The discussion of the experimental NMR chemical shifts and of selected vibrational band positions is supported by theoretical data. The thermal properties were investigated by differential scanning calorimetry (DSC). The pKa values of 2‐H3N‐closo‐CB11H11 (H‐ 1 ), 1‐H3N‐closo‐CB11H10 (H‐ 7 ), and 1,2‐(H3N)2closo‐CB11H10 (H2‐ 3 ) were determined by potentiometric titration and by NMR studies. The experimental results are compared to theoretical data (DFT and ab initio). The basicities of the aminocarba‐closo‐dodecaborates agree well with the spectroscopic and structural properties.  相似文献   

19.
The Raman and IR spectra of the cesium salts of monocarbon carboranes, [closo-CB11H12] and [nido-CB10H13], are reported and the assignment of the normal modes is given. Quantum-chemical calculations of the geometry of undistorted closo-anions B12H12 2– and CB11H12 were carried out and normal coordinate analysis for the latter was performed. Structural parameters and spectral characteristics of isoelectronic closo-polyhedra [B12H12]2–, [CB11H12], and p-C2B10H12 and those of the closo- and nido-structures were compared.  相似文献   

20.
A new approach to synthesis of hetero-substituted derivatives of cobalt bis(1,2-dicarbollide) was proposed. The approach involves stepwise introduction of functional groups into different dicarbollide ligands. Halogenation of the monohydroxy derivative [8-OH-3,3??-Co-(1,2-C2B9H10)(1??,2??-C2B9H11)]? gave the corresponding halogen hydroxy derivatives [8-OH-8??-X-3,3??-Co(1,2-C2B9H10)2]? (X = Cl, Br, and I). Reactions of 8,8??-??-iodonium-3-commo-cobaltbis(1,2-dicarba-closo-dodecaborate) [8,8??-I-3,3??-Co(1,2-C2B9H10)2] with chloroform and 1,2-dibromoethane yielded the mixed halides [8-Y-8??-I-3,3??-Co(1,2-C2B9H10)2]? (Y = Cl and Br).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号