首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
溶胶-凝胶-硫化法制备硅橡胶吸附萃取搅拌棒   总被引:1,自引:1,他引:0  
采用溶胶-凝胶-硫化法,以甲基乙烯基硅橡胶和乙烯基封端硅橡胶为原料制备了厚壁硅橡胶吸附萃取搅拌棒(stir bar for sorptive extraction,SBSE)。采用分段硫化和多阶程序升温老化防止涂层脱落和龟裂,一次涂渍涂层厚度约150~250μm,280℃下无流失,使用寿命可达150次。利用所制备涂层,结合自制热解析系统(thermal desorption system,TDS),建立了SBSE-TDS-CGC-FID测定水样中6种多环芳烃(polyaromatichydrocarbons,PAHs)的方法。方法的线性范围为0.3~1000μg/L,检出限为0.002~0.011μg/L,相对标准偏差在0.92%~6.14%之间。该方法能够满足欧盟2005/69/EC指令对多环芳烃低于10 mg/kg的检测要求。  相似文献   

2.
固相萃取搅拌棒萃取-气相色谱分析海水中的多环芳烃   总被引:21,自引:1,他引:21  
利用固相萃取搅拌棒(SBSE)萃取海水中的多环芳烃,然后用热解吸脱附-气相色谱分析。研究了萃取时间、添加NaCl浓度对萃取效率的影响。实验结果表明,SBSE方法对16种多环芳烃的萃取回收率分别在33.5%~122.4%之间;对标准样品的检出限为2.74-13.5ng/L;方法RSD为3.8%~13.1%。用此方法测定了大连海岸海水中的多环芳烃含量。  相似文献   

3.
以竹炭为固相萃取吸附材料,考察了其对环境水样中16种多环芳烃的吸附富集能力,采用DB-35MS弹性石英毛细管色谱柱对16种多环芳烃进行分离,气相色谱-质谱联用法对多环芳烃进行定性及定量分析.结果表明,1 000 mg竹炭作为固相萃取吸附剂,10 mL二氯甲烷作为洗脱剂,上样速率5 mL/min,水样中甲醇体积分数为15%的条件下,16种多环芳烃有较好的回收率,竹炭固相萃取柱的穿透体积大于500 mL,通过实验比较竹炭的萃取回收率优于商品化的C18固相萃取柱.16种多环芳烃的质量浓度在10 ~500 ng/L范围内与峰面积的线性关系良好(苯并(k)荧蒽,苯并(a)芘,二苯并(a,h)蒽,苯并(g,h,i)苝为25 ~500 ng/L),相关系数为0.983 6 ~0.998 4.方法的检出限为0.6 ~8.0 ng/L,实际水样的加标回收率为67% ~113%,相对标准偏差为2.1% ~11.3%.通过对白沙河河水的分析表明,该方法能够满足实际水样的测定,竹炭可以作为固相萃取材料应用于水中16种多环芳烃的分析测定.  相似文献   

4.
搅拌棒吸附萃取技术   总被引:1,自引:0,他引:1  
搅拌棒吸附萃取技术的提出至今已有二十年,其源于固相微萃取,却有更高的固定相体积、萃取容量和萃取回收率。搅拌棒吸附萃取作为一种高效的样品前处理方法,广泛应用于环境样品、食品样品、药物样品和挥发性物质的分离富集。搅拌棒的核心是涂层,目前已有商品化涂层、自制分子印迹聚合物涂层和自制非印迹涂层。本文介绍了搅拌棒吸附萃取的基本原理,系统评述了各种搅拌棒吸附萃取涂层的发展和应用研究进展,并介绍了一些新颖的搅拌棒萃取模式,最后对搅拌棒吸附萃取技术的发展进行了总结和展望。  相似文献   

5.
建立了顶空固相微萃取(HSSPME)-气相色谱(GC)-质谱(MS)联用测定纺织品中甲苯、4-乙烯基环己烯、苯乙烯、萘和1-苯基环己烯5种挥发性有机物(VOCs)的分析方法。选择聚二甲基硅氧烷(PDMS)作为萃取涂层,优化了SPME的萃取条件,包括平衡时间、萃取时间、萃取温度、顶空体积、离子强度、搅拌速度、解吸温度和时间以及GC—MS仪器条件。对于甲苯、4-乙烯基环己烯、苯乙烯、萘和1-苯基环己烯方法线性范围分别为0.087~870、3.32~3320、2.28~2280、0.015~150和0.050~50.0ng/g;检出限分别为0.005、0.042、0.670、0.008和0.011ng/g。实际样品加标回收率在80.1%~122%之间,RSD在0.8%~8.6%之间。方法符合纺织品中痕量VOCs的快速分析要求。  相似文献   

6.
制备了一种二维的[Zn(benzotriazole)2]n配位聚合物,并经过XRD、SEM及元素分析法的表征,将其用于富集萃取环境水样中的6种重质多环芳烃,该配合物对于含多苯环的化合物显示出较强的吸附力。实验中分别对填料用量、淋洗剂、洗脱剂的种类及用量、穿透体积等参数进行考察,并将其与同等上样量及加标量的C18固相萃取小柱进行对比,建立了水样中6种多环芳烃的气相色谱-质谱联用检测方法。结果表明,使用200mg[Zn(benzotriazole)2]n配合物作为固相萃取填料,以10%甲醇为淋洗剂,0.5mL丙酮和5mL二氯甲烷作为洗脱剂,在上样体积为200mL、流速为4mL/min的条件下,6种多环芳烃均具有较高的回收率。荧蒽(Flan)、苯并(b)荧蒽(BbF)、苯并(g,h,i)芘(BghiP)的质量浓度在20~1000μg/L范围内,苯并(k)荧蒽(BkF)、苯并(a)芘(BaP)、茚并(1,2,3-Cd)芘(InP)在10~500μg/L范围内与峰面积呈良好线性关系,相关系数为0.9968~0.9993。方法的检出限为0.45~10.7ng/L,加标回收率为77%~112%,相对标准偏差为3.8%~8.5%。结果表明,该方法具有成本低、灵敏度高等特点,能够满足实际水样中6种多环芳烃的测定要求。  相似文献   

7.
杨云  栾伟  罗学军  李攻科 《分析化学》2004,32(6):775-778
研究了微波辅助萃取-固相微萃取联用、气相色谱-质谱联用测定土壤中除草剂扑草净的分析方法。采用正交设计实验优化了萃取溶剂种类和体积、微波辐射时间和微波功率等微波辅助萃取条件;研究了SPME萃取涂层、搅拌速度、萃取时间和解吸时间等对萃取效率的影响。方法的检出限为0.01ng/g;线性范围为0.2—200μg/L。在优化的条件下测定了5和50ng/g的合成土壤样品,回收率分别为90.1%和91.6%;相对标准偏差分别为9.4%和8.8%(n=6)。本法综合了微波辅助萃取和固相微萃取的优点,操作简便.灵敏度高,特别适合于固体样品中痕量有机物的萃取分离。  相似文献   

8.
研究了微波辅助萃取(MAE)-固相微萃取(SPME)联合萃取、气相色谱-质谱法(GC-MS)测定土壤中水胺硫磷的分析方法;采用正交设计试验优化了微波升温程序、萃取温度、萃取时间、萃取溶剂体积等MAE条件;研究了SPME萃取涂层、萃取时间、解吸温度等对萃取效率的影响;方法的线性范围在1.O~20μg/L之间,检出限为O.49ng/g;测定25、100ng/g加标土壤样品,回收率分别为79%和107%。RSD分别为2.6%和6.5%;方法综合了MAE快速高效和SPME富集浓缩的优点,以水为萃取溶剂,特别适合于固体样品中痕量有机物的分析。  相似文献   

9.
冯利  张胜军  朱国华  李沐霏  刘劲松 《色谱》2017,35(4):466-471
基于搅拌棒吸附萃取(SBSE)技术建立了气相色谱-质谱测定地表水中16种多环芳烃(PAHs)的分析方法。该法采用多搅拌吸附棒同时富集,依次热脱附冷聚焦后进样的方式有效解决了搅拌棒吸附时间长、富集水样体积小等问题。优化后的结果表明,在0.2~10 ng/L范围内(萘为0.5~10 ng/L范围),16种PAHs的线性关系良好,相关系数(r)均0.99,方法检出限(MDL)为0.03~0.20 ng/L(萘为0.50 ng/L)。用该方法对钱塘江流域地表水进行测定,共检测出11种PAHs,含量为0.13~1.57 ng/L,不同添加水平下的加标回收率为75.6%~108.9%。该法可应用于地表水样品中该类物质的超痕量检测。  相似文献   

10.
陈娜  张毅军  赵万里  陈军  张裕平 《色谱》2018,36(1):5-11
采用氯化胆碱-乙二醇低共熔溶剂(DES)作致孔剂,制备了聚(甲基丙烯酸丁酯-乙二醇二甲基丙烯酸酯)[poly(BMA-EDMA)]固相微萃取头,并与超高效液相色谱法(UPLC)结合测定了湖水中的3种多环芳烃(PAHs)。实验与不使用DES致孔剂的固相微萃取头和商品化聚二甲硅氧烷(PDMS)萃取头进行比较,含DES的poly(BMA-EDMA)固相微萃取头的富集效果最好。系统考察了萃取条件(萃取时间、萃取溶剂、解吸时间、解吸溶剂及离子强度)对水样中多环芳烃萃取效率的影响。在最优的实验条件下,3种多环芳烃类化合物(萘、联苯、菲)的线性范围为0.1~6.0 mg/L(r≥0.990 3),检出限为2.1~4.9μg/L,回收率为86.4%~111.3%,相对标准偏差(RSD,n=6)为11.2%~15.1%。该法操作简便,稳定性好,成本低,适用于实际环境水样中多环芳烃类化合物的测定。  相似文献   

11.
Stir‐bar sorptive extraction is based on the partitioning of target analytes between the sample (mostly aqueous‐based liquid samples) and a stationary phase‐coated magnetic stir bar. Until now, only PDMS‐coated stir bars are commercially available, restricting the range of applications to the non‐selective extraction of hydrophobic compounds due to the apolar character of PDMS. In this work, a novel stir bar coated with molecularly imprinted polymer as selective extraction phase for sorptive extraction of thiabendazole (TBZ) was developed. Two different procedures, based on physical or chemical coating, were assessed for the preparation of molecularly imprinted stir bars. Under optimum conditions, recoveries achieved both in imprinted and non‐imprinted polymer stir bars obtained by physical coating were very low, whereas TBZ was favourably retained by imprinted over non‐imprinted polymer stir bars obtained by chemical coating and thus the latter approach was used in further studies. Different parameters affecting both stir‐bars preparation (i.e. cross‐linker, porogen, polymerization time) and the subsequent selective extraction of TBZ (i.e. washing, loading and elution solvents, extraction time) were properly optimized. The molecularly imprinted coated stir bars were applied to the extraction of TBZ from citrus samples (orange, lemon and citrus juices) allowing its final determination at concentrations levels according to current regulations.  相似文献   

12.
In this paper, a novel molecularly imprinted polymer (MIP) coated stir bar with ractopamine as template by glass capillary filling with magnetic core as substrate was prepared reproducibly. The ractopamine MIP coating was homogeneous and porous with the average thickness of 20.6 μm. The extraction apparatus for the stir bar was improved to avoid coating loss. The MIP-coated stir bar showed better extraction capacity and good selectivity than that of non-imprinted polymer (NIP) coated stir bar to ractopamine and its analogues. The extraction capacities of ractopamine, isoxsuprine, clenbuterol and fenoterol for MIP-coated stir bar were 3.3, 3.1, 2.8 and 2.4 times as much as that of the NIP coated stir bar, respectively. The MIP-coated stir bars could be used at least 40 times without apparent damage and kept in dried air for 8 months without reduce of extraction ability. A method for the determination of β2-agonists in complex samples by MIP-coated stir bar sorptive extraction coupled with high-performance liquid chromatography (HPLC) was developed. The linear ranges were 0.5–40 μg/L for ractopamine and 1.0–40 μg/L for isoxsuprine and clenbuterol. The detection limits were within the range of 0.10–0.21 μg/L. The method was successfully applied to the analysis of β2-agonists in spiked pork, liver and feed samples with the recoveries of 83.7–92.3%, 80.5–90.2% and 73.6–86.2%, respectively. The RSDs was within 2.9–8.1%. The method is very suitable for the determination of trace β2-agonists in pork, liver and feed samples.  相似文献   

13.
A novel poly(methyl methacrylate–ethyleneglycol dimethacrylate–acrylic acid) film has been introduced for coating on stir bars to sorptive extraction (SBSE). The effects of different contents of porogen, monomer, cross-linker, modifier and initiator during the solvent or bulk polymerization step on the mechanical property and solvent resistant of prepared sorptive stir bars were investigated. The evaluation of results were caused to obtain the four prepared sorptive stir bars with good mechanical stability and excellent resistance to organic solvents. The extraction efficiency of these prepared sorptive stir bars were investigated by liquid desorption-liquid chromatography-ultraviolet detection (LD-LC-UV) using N-Nitrosodiphenylamine as target analyte. SBSE assays showed the sorptive stir bar that prepared using solution polymerization method had the better recovery for N-Nitrosodiphenylamine in water samples. This sorptive stir bar showed good linearity and acceptable recoveries, as well as advantages such as sensitivity, simplicity, low cost and high feasibility. Based on atomic force microscopy (AFM) results, the average pore size of optimum prepared stir bar using solvent polymerization method was obtained ~9 nm. The thermal gravity (TG) and differential scanning calorimetric (DSC) results showed this polyacrylate film has high thermal stability.  相似文献   

14.
A novel poly(phthalazine ether sulfone ketone) (PPESK) film prepared by immersion precipitation technique was coated on stir bars for sorptive extraction. Scanning electron micrographs showed that the coating has a denser porous surface (about 1 microm in thickness) with a sponge-like sublayer, and the thickness of the coating was 250 microm. The PPESK coated stir bar has high thermostability (290 degrees C) and long lifetime (50 times). The extraction properties of this stir bar were evaluated for the extraction of both polar and semi-polar analytes, including organochlorine compounds and organophosphorus pesticides. The PPESK stir bar was proved to show higher affinity towards polar compounds than that of PDMS coated stir bar and higher sample load compared with corresponding PPESK fiber. It was applied to the determination of organochlorine compounds in seawater samples and organophosphorus pesticides in juices by gas chromatographic analysis. The effect of sample matrix was evaluated at optimized condition of extraction temperature, extraction time and salt concentration. Limits of detection were in the range of 0.05-2.53 ng L(-1) for organochlorine compounds in seawater samples using electron capture detector (ECD), with precisions of less than 11% RSD. Limits of detection for organophosphorus pesticides were in the range of 0.17-2.25 ng L(-1) and 2.47-10.3 ng L(-1) in grape and peach juice, respectively, using thermionic specified detector (TSD), with precisions of less than 12% RSD and 20% RSD, respectively.  相似文献   

15.
A sol-gel technique was used for the preparation of a stir bar coated with a composite composed of polydimethysiloxane and beta-cyclodextrin (PDMS/beta-CD). The sol-gel mechanism during coating procedure was discussed and successful binding of beta-CD to the sol-gel network was confirmed by the IR spectra. Scanning electron micrographs of the stir bars revealed a homogeneous surface with a film thickness of 30-150 microm attributing to different coating times. Good thermal stability and solvent-resistance of the stir bar were found thanks to chemical binding formed between the stationary phase and the glass substrate. The PDMS/beta-CD coated stir bar was proved to have better selectivity to polar compounds compared to the PDMS coated stir bar, and higher extraction capacity compared to the corresponding PDMS/beta-CD coated fiber. Methods for the determinations of estrogens in environmental water, bisphenol A in drinking water and in leachate of one-off dishware by the PDMS/beta-CD coated stir bar coupled with high-performance liquid chromatography (HPLC) were developed. The limits of detection were within the range of 0.04-0.11 microg l(-1) for estrogens using UV detection and 8 ngl(-1) for bisphenol A using fluorescence detection. Reproducibility with RSD less than 9.7% for extractions of real water samples at microg l(-1) or ngl(-1) level was obtained.  相似文献   

16.
Stir bar sorptive extraction is a powerful technique for the extraction and analysis of organic compounds in aqueous matrices. Carbonyl compounds are ubiquitous components in rainwater, however, it is a major challenge to accurately identify and sensitively quantify carbonyls from rainwater due to the complex matrix. A stir bar sorptive extraction technique was developed to efficiently extract carbonyls from aqueous samples following chemical derivatization by O‐(2,3,4,5,6‐pentafluorobenzyl) hydroxylamine hydrochloride. Several commercial stir bars in two sizes were used to simultaneously measure 29 carbonyls in aqueous samples with detection by gas chromatography with mass spectrometry. A 100 mL aqueous sample was extracted by stir bars and the analytes on stir bars were desorbed into a 2 mL solvent solution in an ultrasonic bath. The preconcentration Coefficient for different carbonyls varied between 30 and 45 times. The limits of detection of stir bar sorptive extraction with gas chromatography mass spectrometry for carbonyls (10–30 ng/L) were improved by ten times compared with other methods such as gas chromatography with electron capture detection and stir bar sorptive extraction with high‐performance liquid chromatography and mass spectrometry. The technique was used to determine carbonyls in rainwater samples collected in York, UK, and 20 carbonyl species were quantified including glyoxal, methylglyoxal, isobutenal, 2‐hydroxy ethanal.  相似文献   

17.
A method for the determination of ultra-trace amounts of organochlorine pesticides (OCPs) in river water was developed by using stir bar sorptive extraction (SBSE) followed by thermal desorption and comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry (SBSE-TD-GC×GC-HRTOF-MS). SBSE conditions such as extraction time profiles, phase ratio (β: sample volume/polydimethylsiloxane (PDMS) volume), and modifier addition, were examined. Fifty milli-liter sample including 10% acetone was extracted for 3 h using stir bars with a length of 20 mm and coated with a 0.5 mm layer of PDMS (PDMS volume, 47 μL). The stir bar was thermally desorbed and subsequently analyzed by GC×GC-HRTOF-MS. The method showed good linearity over the concentration range from 50 to 1000 pg L(-1) or 2000 pg L(-1) for all analytes, and the correlation coefficients (r(2)) were greater than 0.9903 (except for β-HCH, r(2)=0.9870). The limit of detection (LOD) ranged from 10 to 44 pg L(-1). The method was successfully applied to the determination of 16 OCPs at pg L(-1) to ng L(-1) in river water. The results agree fairly well with the values obtained by a conventional liquid-liquid extraction (LLE)-GC-HRMS (selected ion monitoring: SIM) method using large sample volume (20 L). The method also allows screening of non-target compounds, e.g. pesticides and their degradation products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) and metabolites in the same river water sample, by using full spectrum acquisition with accurate mass in GC×GC.  相似文献   

18.
杨蕾  王保兴  侯英  杨燕 《色谱》2007,25(5):747-752
应用搅拌棒吸附萃取(SBSE)-热脱附(TDS)-气相色谱/质谱联用(GC/MS)方法测定了滇池水系(滇池和盘龙江上、中、下游)中16种多环芳烃(PAHs)的含量。方法快速简便,无有机溶剂污染,PAHs的最低检出限为1.0~468.8 pg,理论回收率在90%以上,加标回收率为83.1%~109.4%,相对标准偏差小于10%。测定结果表明,这16种多环芳烃在滇池水样中的含量为89.16 ng/L,在盘龙江上游水样中的含量为65.41 ng/L,在盘龙江中游水样中的含量为339.22 ng/L,而在盘龙江下游水样中的含量为62.25 ng/L,说明滇池水系已经受到一定的PAHs污染,加强对滇池、盘龙江中PAHs有机污染的控制势在必行。  相似文献   

19.
Sheng N  Wei F  Zhan W  Cai Z  Du S  Zhou X  Li F  Hu Q 《Journal of separation science》2012,35(5-6):707-712
A unique stir bar coated with dummy molecularly imprinted polymers for bisphenol A was prepared by sol-gel technique. The scanning electron microscopic image of the coating presented a homogeneous surface with a thickness of about 57 ± 2.5 μm. The Fourier transform infrared spectrum of the coating proved the incorporating of dummy molecularly imprinted polymers with the sol-gel network. When used to extract bisphenol A from aqueous solution containing bisphenol A and its three analogs (4-tert-butylphenol, 4,4'-dihydroxybiphenyl, and 3,3',5,5'-tetrabromo-bisphenol A). Dummy molecularly imprinted polymers-coated stir bar showed better selectivity than the bars coated with polydimethylsiloxane or non-imprinted polymers. The extraction conditions including stirring speed, pH, and extraction time were optimized. After back extraction with methanol, the extracts were analyzed by high-performance liquid chromatography-fluorescence detection. The linear range was 0.0228-0.456 ng/mL with correlation coefficient of 0.9994 and the detection limit was about 5.70 × 10(-3) ng/mL based on three times ratio of signal-to-noise. The method was applied to the determination of trace bisphenol A in tap water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号