首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Addition of Cationic Lewis Acids [M′Ln]+ (M′Ln = Fe(CO)2Cp, Fe(CO)(PPh3)Cp, Ru(PPh3)2Cp, Re(CO)5, Pt(PPh3)2, W(CO)3Cp to the Anionic Thiocarbonyl Complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W; pz = 3,5‐dimethylpyrazol‐1‐yl) Adducts from Organometallic Lewis Acids [Fe(CO)2Cp]+, [Fe(CO)(PPh3)Cp]+, [Ru(PPh3)2Cp]+, [Re(CO)5]+, [ Pt(PPh3)2]+, [W(CO)3Cp]+ and the anionic thiocarbonyl complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W) have been prepared. Their spectroscopic data indicate that the addition of the cations occurs at the sulphur atom to give end‐to‐end thiocarbonyl bridged complexes [HB(pz)3(OC)2MCSM′Ln].  相似文献   

2.
New complexes {M(CO)4[Ph2P(S)P(S)Ph2]} (M = Cr, Mo and W), (1a)–(3a), [(1a), M = Cr; (2a), M = Mo; (3a), M = W] and {M2(CO)10[-Ph2P(S)P(S)Ph2]} (M = Cr, Mo, W), [(1b)–(3b) [(1b), M = Cr; (2b), M = Mo; (3b), M = W]] have been prepared by the photochemical reaction of M(CO)6 with Ph2P(S)P(S)Ph2 and characterized by elemental analyses, f.t.-i.r. and 31P-(1H)-n.m.r. spectroscopy and by FAB-mass spectrometry. The spectra suggest cis-chelate bidentate coordination of the ligand in {M(CO)4[Ph2P(S)P(S)Ph2]} and cis-bridging bidentate coordination of the ligand between two metals in (M = Cr, Mo and W).  相似文献   

3.
A facile synthesis of the novel selenium-capped trimolybdenum and tritungsten ring carbonyl clusters [Se2M3(CO)10]2− (M = Mo, 1; W, 4) have been achieved. The selenium-capped trimolybdenum cluster compound [Et4N]2[Se2Mo3(CO)10] ([Et4N]2[1]) can be obtained from the reaction of the trichromium cluster compound [Et4N]2[Se2Cr3(CO)10] with 4 equiv. of Mo(CO)6 in refluxing acetone. On the other hand, when [Et4N]2[Se2Cr3(CO)10] reacted with 4 equiv. of W(CO)6 in refluxing acetone, the planar cluster compound [Et4N]2[Se2W4(CO)18] ([Et4N]2[3]) was isolated, which could further transform to the tritungsten cluster compound [Et4N]2[Se2W3(CO)10] ([Et4N]2[4]) in good yield. Alternatively, clusters 1 and 4 could be formed from the reactions of the monosubstituted products [Et4N]2[Se2Cr2M(CO)10] (M = Mo; W, [Et4N]2[2]) with 3 equiv. of M(CO)6 in acetone, respectively. Complexes 1-4 are fully characterized by IR, 77Se NMR spectroscopy, and single-crystal X-ray analysis. Clusters 1, 2, and 4 are isostructural and each display a trigonal bipyramidal structure with a homometallic M3 ring (M = Mo, 1; W, 4) or a heterometallic Cr2W ring that is further capped above and below by μ3-Se atoms. Further, the intermediate planar complex 3 exhibits a Se2W2 square with each Se atom externally coordinated to one W(CO)5 group. This paper describes a systematic route to a series of selenium-capped trimetallic carbonyl clusters and the formation and the structural features of the resultant clusters are discussed.  相似文献   

4.
Five new complexes, [M(CO)5(apmsh)] [M = Cr; (1), Mo; (2), W; (3)], [Re(CO)4Br(apmsh)] (4) and [Mn(CO)3(apmsh)] (5) have been synthesized by the photochemical reaction of metal carbonyls [M(CO)6] (M = Cr, Mo and W), [Re(CO)5Br], and [Mn(CO)3Cp] with 2-hydroxyacetophenone methanesulfonylhydrazone (apmsh). The complexes have been characterized by elemental analysis, mass spectrometry, f.t.-i.r. and 1H spectroscopy. Spectroscopic studies show that apmsh behaves as a monodentate ligand coordinating via the imine N donor atom in [M(CO)5(apmsh)] (1–4) and as a tridentate ligand in (5).  相似文献   

5.
The complexes [MBr(π-allyl)(CO)2(bipy)] (M = Mo, W, bipy = 2,2′-bipyridine) react with alkylxanthates (MIRxant), and N-alkyldithiocarbamates (MIRHdtc) (MI = Na or K), yielding complexes of general formula [M(S,S)- (π-allyl)(CO)2(bipy)] (M = Mo, (S,S) = Rxant (R = Me, Et, t-Bu, Bz), RHdtc (R = Me, Et); M = W, (S,S) = Extant). A monodentate coordentate coordination of the (S,S) ligand was deduced from spectral data. The reaction of [MoBr(π-allyl)(CO)2(bipy)] with MeHdtc and Mexant gives the same complexes whether pyridine is present or not. The complexes [Mo(S,S)(π-allyl)(CO)2(bipy)] ((S,S) = MeHdtc, Mexant) do not react with an excess of (S,S) ligand and pyridine.No reaction products were isolated from reaction of [MoBr(π-allyl)(CO)2(dppe)] with xanthates or N-alkyldithiocarbamates.  相似文献   

6.
Summary The HFe3(CO)9S and Fe3(CO)9S2– anions [prepared from H2Fe3(CO)9S by deprotonation] react with M(CO)5(THF) (M=Cr or W) to form the anionic capped clusters, HFe3(CO)9SM(CO) 5 and Fe3(CO)9SM(CO) 5 2– , which can be isolated as their Et4N salts. The M-S bonds of these complexes are cleaved by ligands such as PPh3 or MeCN. The dianionic clusters are more stable than their monoanionic analogues. Alkylation of Fe3(CO)9S2– with alkyl halides followed by protonation yields HFe3(CO)9SR complexes, among them the first member of the series with R=Me.  相似文献   

7.
Tetracarbonyl-diimine complexes [M(CO)4(α-diimine)] (M=Cr, Mo, W; α-diimine=polypyridyl (bpy, phen), pyridine-2-carbaldehyde (R-PyCa) or 1,4-diaza-butadiene, (R-DAB)) have very interesting structural, spectroscopic, electrochemical and photochemical properties. Their comprehensive experimental and theoretical investigations have important implications for our understanding of the chemistry of organometallic complexes with noninnocent ligands. The most interesting physical and chemical aspects of [M(CO)4(α-diimine)] complexes, which have more general relevance, are highlighted and discussed.  相似文献   

8.
Four novel M/Cu/S polymers [Et4N][MS4Cu3(S2COEt)2] (1a: M=Mo; 1b: M=W) and Et4N][MS4Cu2SEt] (2a: M=Mo; 2b: M=W) have been prepared by reactions of [Et4N]2[MS4] with CuS2COEt and CuSEt. X-ray crystal structure determinations reveal that the polymeric anions of complexes 1a and 1b both consist of MS4Cu3 building blocks linked via bidentate [S2COEt] bridging ligands to form 1D polymeric chains. The anion structures of the polymeric compounds 2a and 2b contain MS4Cu2 repeating units which are connected via μ-SEt ligands forming a zigzag chain running down the crystallographic b axis.  相似文献   

9.
Summary Reinvestigation of the reaction of M(CO)6 (M=Cr, Mo or W) with KOH has been found to provide a very convenient route to the K[M2H(CO)10] compounds (M=Cr, Mo or W). The reaction involving Cr(CO)6 yields new potassium derivatives containing [Cr2(CO)10]2– and [HCr(CO)5] species; also K[Cr2D(CO)10] is produced from the Cr(CO)6/KOD interaction in C2D5OD. The reaction involving two different group 6 metal carbonyls yields [MM(CO)10(-H)] (MM=CrMo, CrW or WMo) species as their K+ and PPN+ [bis(triphenylphosphine)iminium] salts.  相似文献   

10.
Polymeric Thiolato Complexes [M(SPh)3]∞ of the Metals Mo, W, Fe, and Ru with Linear Metal Chains. Synthesis and Crystal Structure of (OC)3Fe(SPh)3Fe(SPh)3Fe(CO)3 · 2(CH3)2CO At high temperature the reaction of the metal carbonyls Mo(CO)6, W(CO)6 and Fe(CO)5 with S2Ph2 (Ph = C6H5) yields the polymeric complexes [M(SPh)3]∞. Similarly [Ru(SPh)3]∞ can be obtained from ruthenium(III) acetylacetonate and HSPh. At room temperature under UV-irradiation Fe(CO)5 reacts with S2Ph2 to form the oligomeric complex (OC)3Fe(SPh)3Fe(SPh)3Fe(CO)3. The polymeric complexes [M(SPh)3]∞ (M = Mo, W, Fe, Ru) are composed of linear chains with bridging SPh-ligands between the metal atoms. Of these complexes [Fe(SPh)3]∞ is paramagnetic, whereas the others exhibit antiferromagnetic behaviour. The spin coupling is presumably connected with the formation of metal pairs, resulting in alternating shortened and extended distances in the metal chain. The oligomeric complex (OC)3Fe(SPh)3Fe(SPh)3Fe(CO)3 crystallizes triclinic in the space group P1 with z = 2. It has almost the symmetry D3d with a linear arrangement of the Fe atoms. The paramagnetism of Fe3(CO)6(SPh)6 can be explained by a d6 high spin configuration of the central atom and low spin behaviour of the two other Fe atoms, which are bonded to CO.  相似文献   

11.
The haptotropic migration of Cr(CO)3, Mo(CO)3 and W(CO)3 moieties on a substituted phenanthrene has been studied theoretically using gradient-corrected density functional theory. The stationary points (minima and transition states) on the energy hypersurface characterizing the migrating process of the metal fragment over the aromatic system have been located. Furthermore, the energetic and structural differences between complexes of the three metals Cr, Mo and W and the effect of a high substitution of one arene ring on the reaction energy profile have been analyzed. The possibility to design a molecular switch based on the substituent pair R = O/OH is investigated. It is concluded that the Mo and W complexes undergo a haptotropic migration more easily than the corresponding Cr system.  相似文献   

12.
The thermal dissociation of gaseous Mo(CO)6 and W(CO)6 in an argon carrier gas, Mo(CO)6 → Mo(CO)5 + CO (1) and W(CO)6 → W(CO)5 + CO (2), is studied over temperature ranges of ∼585–685 K for (1) and ∼690−810 K for (2) at a total gas concentrations of 4 × 10−6 and 4 × 10−5 mol/cm3 by using the shock tube technique in conjunction with absorption spectrophotometry. The measured rate constants are extrapolated to the high-pressure limit by means of a newly developed procedure, with the resultant expressions for the indicated temperature ranges reading as kd1,∞(T),[s−1] = 1016.12 ± 0.68exp[(−148.8 ± 8.1 kJ/mol)/RT] and kd2,∞(T),[s−1] = 1015.93 ± 0.63exp[(−171.7 ± 8.9 kJ/mol)/RT]. Comparison of the high-pressure dissociation rate constants with the published data revealed a considerable discrepancy, a tentative explanation of which is given. Based on the obtained high-pressure dissociation rate constants and the available data on the high-pressure room-temperature rate constants for the reverse reaction of recombination, the first bond dissociation energies for these molecules are evaluated and compared with previous determinations, both theoretical and experimental. The enthalpies of formation of Mo(CO)5 and W(CO)5 are determined: ΔfH°(Mo(CO)5, g, 298.15 K) = −644.1 ± 5.6 kJ/mol and ΔfH°(W(CO)5, g, 298.15 K) = −581.9 ± 6.6 kJ/mol. Based on the enthalpies of formation of Mo(CO)5, W(CO)5, Mo(CO)6, and W(CO)6, and the published molecular parameters of these four species, their thermochemical functions are calculated and presented in the form of NASA seven-term polynomials.  相似文献   

13.
《Polyhedron》2004,23(18):3143-3146
The title complexes were synthesized in acetone by the reaction of [n-Bu4N]2[MoS4Cu4Cl4] and pzMe2 for compound 1, and n-Bu4NBr, [NH4]2[WS4], CuCl and pzMe2 for compound 2. X-ray diffraction studies of 1 and 2 demonstrate that four of the six edges of the tetrahedral [MS4]2− core are bridged by four copper atoms, giving a pentanuclear structure MS4Cu4(pzMe2)6X2 (M = Mo, W) with the five metal atoms essentially coplanar. The four Cu atoms exhibit two different coordination modes. Each of one pair of mutually trans Cu atoms is coordinated by two (μ3-S) atoms and two nitrogen atoms of pzMe2 rings, giving a distorted tetrahedral CuS2N2 arrangement. The other two mutually trans Cu atoms are coordinated by two (μ3-S) atoms, one nitrogen atom of pzMe2 and one terminal Cl or Br ligand, giving a distorted tetrahedral CuS2NX unit. In addition to being structurally studied by X-ray diffraction, the title compounds have been characterized by IR, UV–Vis and 1H NMR spectroscopy. The IR results, which include low-frequency M–Sb stretching bands, are consistent with the X-ray structural analysis and confirm that the [MS4]2− cores are coordinated through all four sulfur atoms in the complexes 1 and 2.  相似文献   

14.
Reactions of triangular telluride-bridged Mo and W clusters [M33-Te)(μ2-Te2)3(dtp)3]+ (M = Mo, W; dtp = (EtO)2PS2) with S2Cl2 or Br2 lead to Te/S exchange in the Te2 ligands, with the formation of complexes with a novel TeS2− ligand. Reaction of [W33-Te)(μ2-Te2)3(dtp)3]+ with Br2 or S2Cl2 gives a mixture of complexes formulated as [W3Te4.25S2.75(dtp)3]+ and [W3Te4.30S2.70(dtp)3]+, respectively, on the basis of X-ray structural analysis. Reaction of the Mo homolog, namely [Mo33-Te)(μ2-Te2)3(dtp)3]+, with S2Cl2 gives rise to [Мо3Te4.74S2.26((EtO)2PS2)3]+. Electrospray ionization mass spectrometry (ESI-MS) complements the information gathered from X-ray analysis regarding the degree of Te by S substitution; moreover, detailed insights on the regioselectivity of such replacement are also obtained from ESI-MS analysis. These experimental evidences indicate that Te by S replacement in W complexes display high regioselectivity (as evidenced by the exclusive formation of a W3Te4S34+ core), the equatorial Te ligands being preferentially replaced over the Teax and μ3-Te ligands. Conversely, for the Mo homologs, a broad distribution of Mo3Te7−xSx4+ cluster species ranging from x = 0 to 6 is observed. Bond distance analysis as well as crystal packing trends as a function of the cluster core M3Te7−xSx4+ (M = Mo, W; x = 0–6) composition are also reported.  相似文献   

15.
A series of heterodinuclear complexes with acetylene dithiolate (acdt2?) as the bridging moiety were synthesised by a facile one‐pot procedure that avoided use of the highly elusive acetylene dithiol. Generation of the W–Ru complex [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] (Tp’=hydrotris(3,5‐dimethylpyrazolyl)borate) and the W–Pd complexes [Tp′W(CN)(CO)(C2S2)Pd(dppe)] and [Tp′W(CO)2(C2S2)Pd(dppe)][PF6] (dppe=1,2‐bis(diphenylphoshino)ethane), which exhibit a [W(η2‐κ2‐C2S2)M] core (M=Ru, Pd), was accomplished by using a transition‐metal‐assisted solvolytical removal of the Me3Si‐ethyl thiol protecting groups. All intermediate species of the reaction have been fully characterised. The highly coloured W–Ru complex [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] shows reversible redox chemistry, as does the prototype complex [Tp′W(CO)2(C2S2)Ru(η5‐C5H5)(PPh3)][PF6]. Single crystal X‐ray diffraction and IR, EPR and UV/Vis spectroscopic studies in conjunction with DFT calculations prove the high electronic delocalisation of states over the acdt2? linker. Comparative studies revealed a higher donor strength and more pronounced dithiolate character of acdt2? in [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] relative to [Tp′W(CO)2(C2S2)Ru(η5‐C5H5)(PPh3)]+. In addition, the influence of the overall complex charge on the metric parameters was investigated by single‐crystal X‐ray diffraction studies with the W–Pd complexes [Tp′WL2(C2S2)Pd(dppe)] (L=(CN?)(CO) or (CO)2). The central [W(C2S2)Pd] units exhibit high structural similarity, which indicates the extensive delocalisation of charge over both metals.  相似文献   

16.
Reactions of monooxidized thioyl and selenoyl bis(phosphanyl)amine ligands C10H7‐1‐N(P(E)Ph2)(PPh2) [E = S ( 1 ), Se ( 2 )] with Mo(CO)4(pip)2 and W(CO)4(cod) afforded the complexes [M(CO)4{ 1 ‐κ2P,S}] [M = Mo ( 3 ), W ( 4 )] and [M(CO)4{ 2 ‐κ2P,Se}] [M = Mo ( 5 ), W ( 6 )]. Complexes 3 – 6 were characterized by multinuclear NMR (1H, 13C, 31P, and 77Se NMR) and IR spectroscopy. Crystal‐structure determinations were carried out on 3 , 5 , and 6 , which represent the first examples of structurally characterized complexes of such ligands with group‐6 metal carbonyls.  相似文献   

17.
Summary The kinetics of the reduction of octacyanometallates(IV) in alkaline aqueous medium have been studied spectrophotometrically. The experimental results are in agreement with following rate law:-d[M(CN) inf8 sup3– ]/dt = k obs[M(CN) inf8 sup3– ]2[OH][Na+] where k obs = 4.1 × 10–2M–3s–1 (Mo) and 4.0 × 10–4 M–3 s–1 (W). The rate data were used to calculate the thermodynamic activation parameters H and S . A mechanism of the reaction is discussed.On leave from Faculty of Chemistry, Forest Engineering Institute, Archangelsk, Russia.  相似文献   

18.
A series of CO‐releasing molecules M(CO)5 L (M = Mo, W and Cr), ( 1 , 2 , 3 , L = glycine methyl ester; 4 , 5 , 6 , N‐methylimidazole; 7 , 8 , 9 , 2‐aminopyridine; 10 , 11 , 12 , 3‐aminopyridine; 13 , 14 , 15 , 4‐aminopyridine), were synthesized. All complexes have been characterized by NMR, IR and electrospray ionization mass spectroscopy; the octahedral structures of 14 and 15 were also established by X‐ray crystallography. Furthermore, all complexes were evaluated for toxicity, pharmacokinetics and metabolic processes. Cytotoxic effects on the proliferation of fibroblast cell line were assayed by MTT. Among the complexes, Mo complex 1 showed the lowest cytotoxicity (IC50 = 597 µmol l?1) and W complex 2 showed a remarkable toxic effect, with IC50 = 52 µmol l?1. With the same ligand, the toxic effects of the complexes increase in the order of metal element W < Cr < Mo. For the same central metal element, the complexes containing imidazole showed lower toxic effects than those containing amino acid ester or aminopyridine. In accordance with the results from cytotoxicity, the complexes also showed corresponding toxic effects in animal models. The biodistributions of the complexes were established by inductively coupled plasma–atomic emission spectroscopy, measuring metal in tissues and organs. The results show that the complexes were gradually absorbed and unevenly distributed in vivo. The complexes containing imidazole entered tissues and organs faster than those containing amino acid ester. The complexes containing W atom were absorbed and distributed more slowly than those containing Mo or Cr atoms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
《Polyhedron》2005,24(3):435-441
The title compounds were synthesized by the reactions of [NH4]2[MS4] (M = Mo, W), AgI and Hmimt in acetone and characterized by IR, 1H NMR and UV–Vis spectroscopy. The polymeric structure of [WS4Ag2(Hmimt)2]n was determined by X-ray crystallography. In this compound, there are two distinctly different coordination modes for the silver atoms. One Ag atom has a pseudo-tetrahedral geometry with one terminal monodentate-S Hmimt, two μ2-S bridging Hmimt and one S atom of a monodentate WS4 unit. The other is surrounded by four sulfur atoms belonging in pairs to two WS4 fragments; the coordination geometry is distorted tetrahedral. The [WS4Ag2(Hmimt)2]n polymer represents the first example of tetrathiometalate anions [MS4]2− (M = Mo, W, or V) coordinated to another metal atom in a monodentate fashion. In both crystal structures determined the Hmimt ligands are present in the thione form, with coordination taking place via the sulfur atom only.  相似文献   

20.
Six heterothiometalic clusters, namely, [WS4Cu4(dppm)4](ClO4)2 · 2DMF · MeCN ( 1 ), [MoS4Cu4(dppm)4](NO3)2 · MeCN ( 2 ) [MoS4Cu3(dppm)3](ClO4) · 4H2O ( 3 ), [WS4Cu3(dppm)3](NO3) · 4H2O ( 4 ), [WS4Cu3(dppm)3]SCN · CH2Cl2 ( 5 ), and [WS4Cu3(dppm)3]I · CH2Cl2 ( 6 ) [dppm = bis (diphenylphosphanyl)methane] were synthesized. Compounds 1 – 4 were obtained by the reactions of (NH4)2MS4 (M = Mo, W) with [Cu22‐dppm)2(MeCN)2(ClO4)2] {or [Cu(dppm)(NO3)]2} in the presence of 1,10‐phen in mixed solvent (CH3CN/CH2Cl2/DMF for 1 and 2 , CH2Cl2/CH3OH/DMF for 3 and 4 . Compounds 5 and 6 were obtained by one‐pot reactions of (NH4)2WS4 with dppm and CuSCN (or CuI) in CH2Cl2/CH3OH. These clusters were characterized by single‐crystal X‐ray diffraction as well as IR, 1H NMR, and 31P NMR spectroscopy. Structure analysis showed that compounds 1 and 2 are “saddle‐shaped” pentanuclear cationic clusters, whereas compounds 3 – 6 are “flywheel‐shaped” tetranuclear cationic clusters. In 1 and 2 , the MS42– unit (M = W, Mo) is coordinated by four copper atoms, which are further bridged by four dppm molecules. In compounds 3 – 6 , the MS42– unit is coordinated by three copper atoms and each copper atom is bridged by three dppm ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号