首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The B3LYP/DZP++ level of theory has been employed to investigate the structures and energetics of the deprotonated adenine-uracil base pairs, (AU-H)-. Formation of the lowest-energy structure, [A(N9)-U]- (which corresponds to deprotonation at the N9 atom of adenine), through electron attachment to the corresponding neutral is accompanied by proton transfer from the uracil N3 atom to the adenine N1 atom. The driving force for this proton transfer is a significant stabilization from the base pairing in the proton transferred form. Such proton transfer upon electron attachment is also observed for the [A(N6b)-U]- and [A(C2)-U]- anions. Electron attachment to the A-U(N3) radical causes strong lone pair repulsion between the adenine N1 and the uracil N3 atoms, driving the two bases apart. Similarly, lone pair repulsion in the anion A(N6a)-U causes the loss of coplanarity of the two base units. The computed adiabatic electron attachment energies for nine AU-H radicals range from 1.86 to 3.75 eV, implying that the corresponding (AU-H)- anions are strongly bound. Because of the large AEAs of the (AU-H) radicals, the C-H and N-H bond dissociation in the AU- base pair anions requires less energy than the neutral AU base pair. The computed C-H and N-H bond dissociation energies for the AU- anion (i.e., the AU base pair plus one electron) are in the range 1.0-3.2 eV, while those for neutral AU are 4.08 eV or higher.  相似文献   

2.
Microhydration effects upon the adenine-uracil (AU) base pair and its radical anion have been investigated by explicitly considering various structures of their mono- and dihydrates at the B3LYP/DZP++ level of theory. For the neutral AU base pair, 5 structures were found for the monohydrate and 14 structures for the dihydrate. In the lowest-energy structures of the neutral mono- and dihydrates, one and two water molecules bind to the AU base pair through a cyclic hydrogen bond via the N(9)-H and N(3) atoms of the adenine moiety, while the lowest-lying anionic mono- and dihydrates have a water molecule which is involved in noncyclic hydrogen bonding via the O4 atom of the uracil unit. Both the vertical detachment energy (VDE) and adiabatic electron affinity (AEA) of the AU base pair are predicted to increase upon hydration. While the VDE and AEA of the unhydrated AU pair are 0.96 and 0.40 eV, respectively, the corresponding predictions for the lowest-lying anionic dihydrates are 1.36 and 0.75 eV, respectively. Because uracil has a greater electron affinity than adenine, an excess electron attached to the AU base pair occupies the pi* orbital of the uracil moiety. When the uracil moiety participates in hydrogen bonding as a hydrogen bond acceptor (e.g., the N(6)-H(6a)...O(4) hydrogen bond between the adenine and uracil bases and the O(w)-H(w)...N and O(w)-H(w)...O hydrogen bonds between the AU pair and the water molecules), the transfer of the negative charge density from the uracil moiety to either the adenine or water molecules efficiently stabilizes the system. In addition, anionic structures which have C-H...O(w) contacts are energetically more favorable than those with N-H...O(w) hydrogen bonds, because the C-H...O(w) contacts do not allow the unfavorable electron density donation from the water to the uracil moiety. This delocalization effect makes the energetic ordering for the anionic hydrates very different from that for the corresponding neutrals.  相似文献   

3.
The formation of radicals on DNA bases through various pathways can lead to harmful structural alterations. Such processes are of interest for preventing alteration of healthy DNA and, conversely, to develop more refined methods for inhibiting the replication of unwanted mutagenic DNA. In the present work, we explore theoretically the energetic and structural properties of the nine possible neutral radicals formed via hydrogen abstraction from the adenine-thymine base pair. The lowest energy radical is formed by loss of a hydrogen atom from the methyl group of thymine. The next lowest energy radicals, lying 8 and 9 kcal mol-1 higher than the global minimum, are those in which hydrogens are removed from the two nitrogens that would join the base pair to 2-deoxyribose in double-stranded DNA. The other six radicals lie between 16 and 32 kcal mol-1 higher in energy. Unlike the guanine-cytosine base pair, adenine-thymine (A-T) exhibits only minor structural changes upon hydrogen abstraction, with all A-T derived radicals maintaining planarity. Moreover, the energetic ordering for the radicals of the two isolated bases (adenine and thymine) is preserved upon formation of the base pair, though with a wider spread of energies. Even more significantly, the energetic interleaving of the (A-H)*-T and A-(T-H)* radicals is correctly predicted from the X-H bond dissociation energies of the isolated adenine and thymine. This suggests that the addition of the hydrogen-bonded complement base only marginally affects the bond energies.  相似文献   

4.
This is a study of adenine–Au and adenine–uracil–Au (neutral, anionic and cationic), applying the B3LYP density-functional approach. In these systems, the interaction is directly related to the charge; so that as the metal atomic charge increases, the bond strength also increases. Neutral molecules are weakly bonded, the interaction in the case of cations is mainly electrostatic and in the case of the anions, the extra electron is localized on the metal atom and consequently, non-conventional hydrogen bonds are formed. In the case of adenine–Au (anion), the H dissociation energy is similar to the electron dissociation energy, and therefore both reactions may be possible. Moreover, the Au anionic atom modifies the hydrogen bonds of the uracil–adenine base pair. This may be significant in the study of point mutations that may occur in the Watson–Crick dimmer of nucleic basis. The electron-donator properties of these compounds are analyzed with the aid of the donator–acceptor map (DAM), previously described. Adenine–Au, uracil–Au and adenine–uracil–Au are more effective electron donors, but poorer electron acceptors than adenine, uracil and adenine–uracil. If the electron acceptor properties of carotenoids such as β-carotene and astaxanthin are compared, there are indications that astaxanthin may act as an oxidant instead of an antioxidant with the uracil–adenine base pair. The oxidation of nucleic acid bases by carotenoids may have important consequences, as oxidative damage of DNA and RNA appears to be linked to cancer. This is something that demands further studies and for this reason, work concerning the reactivity of carotenoids with DNA-nitrogen bases is in progress.  相似文献   

5.
The roles of nucleic acid radicals in DNA and RNA damage cannot be properly understood in the absence of knowledge of the C-H bond strengths depicting the energy cost to generate each of these radicals. However, previous theoretical studies on the relative energies of different nucleic acid radicals are not fully convincing mainly because of the use of oversimplified model compounds. In the present study we chose nucleoside 3',5'-bisphosphates as model compounds for DNA and RNA, in which the effects of both the nucleobase and phosphorylation were taken into consideration. Using the newly developed ONIOM-G3B3 methods, we calculated the gas-phase bond dissociation enthalpies and solution-phase bond dissociation free energies of all the carbohydrate C-H bonds in the model compounds. It was found that the monoanionic phosphate group (OPO3H-) was a better radical stabilization group than the OH group by 1.3 kcal/mol, whereas the neutral phosphate group (OPO3H2) was a significantly worse radical stabilization group than OH by 4.4 kcal/mol. Due to these reasons, the relative thermodynamic susceptibility of H-abstraction from deoxyribonucleotides and ribonucleotides varied considerably depending on the phosphorylation state and the charge carried by the phosphate groups. Strikingly, the bond dissociation free energy of C2'-H in ribonucleotides was dramatically lower than that of all the other C-H bonds by 5-6 kcal/mol regardless of the phosphorylation state and the charge carried by the phosphate group. This explained the previous experimental finding that radiation damage of RNA occurs mainly via H-abstraction at H-2'. A model study suggested that the strength of the hydrogen bonding interaction between the 2'-OH and 3-phosphate groups should dramatically increase from ribonucleoside 3',5'-bisphosphate to its C2' radical. The strengthened hydrogen bonding stabilized the C2' radical, rendering the C2'-H bond of RNA extraordinarily vulnerable to H-abstraction.  相似文献   

6.
烷烃中碳氢键离解能的估算及其应用   总被引:5,自引:0,他引:5  
曹晨忠  林原斌 《有机化学》2003,23(2):207-211
将烷烃中的C-H键看成氢原子H与烷基Ri相连接而成的Ri-H键,以烷基的 HOMO能级和氢原子的轨道能来关联Ri-H键的离解能BDE。研究表明,烷烃分子中 Ri-H键的离能BDE与烷基Ri的极化效应指数PEI(Ri)有良好的线性关系:BDE= c+dPEI(Ri)。所得方程具有良好的估算精度。烷基Ri极化效应指数PEI(Ri)在羟 基自由基与烷烃反应速度常数的定量相关中,也得到良好的应用。  相似文献   

7.
The dehydrogenated radicals and anions of Watson-Crick adenine-thymine (A-T) base pair have been investigated by the B3LYP/DZP++ approach. Calculations show that the dehydrogenated radicals and anions have relatively high stabilities compared with the single base adenine and thymine. The electron attachment to the A-T base pair and its derivatives significantly modifies the hydrogen bond interactions and results in remarkable structural changes. As for the dehydrogenated A-T radicals, they have relatively high electron affinities and different dehydrogenation properties with respect to their constituent elements. The relatively low-cost hydrogen eliminations correspond to the (N9)-H (adenine) and (N1)-H (thymine) bonds cleavage. Both dehydrogenation processes have Gibbs free energies of reaction DeltaG degrees of 13.4 and 17.2 kcal mol-1, respectively. The solvent water exhibits significant effect on electron attachment and dehydrogenation properties of the A-T base pair and its derivatives. In the dehydrogenating process, the anionic A-T fragment gradually changes its electronic configuration from pi* to sigma* state, like the single bases adenine and thymine.  相似文献   

8.
Density functional theory (DFT) calculations have been used to explore electron attachment to the purines adenine and guanine and their hydrogen atom loss. Calculations show that the dehydrogenation at the N9 site in the adenine and guanine transient anions is the lowest‐cost channel of hydrogen loss, and the N9? H bond scission has Gibbs free energies of dissociation ΔG° of 8.8 kcal mol?1 for the anionic adenine and 13.9 kcal mol?1 for the anionic guanine. The relatively high feasibility of low‐energy electron (LEE)‐induced N9? H bond cleavage in the purine nucleobases arises from high electron affinities of their H‐deleted counterparts. Unlike adenine, other N? H bond dissociations are competitive with the N9? H bond fission in the anionic guanine. The replacement of hydrogen in the ring of purine has a significant effect on the N9? H bond fragmentation. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

9.
Low-temperature ozonation of cumene (1a) in acetone, methyl acetate, and tert-butyl methyl ether at -70 degrees C produced the corresponding hydrotrioxide, C(6)H(5)C(CH(3))(2)OOOH (2a), along with hydrogen trioxide, HOOOH. Ozonation of triphenylmethane (1b), however, produced only triphenylmethyl hydrotrioxide, (C(6)H(5))(3)COOOH (2b). These observations, together with the previously reported experimental evidence, seem to support the "radical" mechanism for the first step of the ozonation of the C-H bonds in hydrocarbons, i.e., the formation of the caged radical pair (R(**)OOOH), which allows both (a) collapse of the radical pair to ROOOH and (b) the abstraction of the hydrogen atom from alkyl radical R(*) by HOOO(*) to form HOOOH. The B3LYP/6-311++G(d,p) (ZPE) calculations revealed that HOOO radicals are considerably stabilized by forming intermolecularly hydrogen-bonded complexes with acetone (BE = 8.55 kcal/mol) and dimethyl ether (7.04 kcal/mol). This type of interaction appears to be crucial for the relatively fast reactions (and the formation of the polyoxides in relatively high yields) in these solvents, as compared to the ozonations run in nonbasic solvents. However, HOOO radicals appear to be not stable enough to abstract hydrogen atoms outside the solvent cage, as indicated by the absence of HOOOH among the products in the ozonolysis of triphenylmethane. The decomposition of alkyl hydrotrioxides 2a and 2b involves a homolytic cleavage of the RO-OOH bond with subsequent "in cage" reactions of the corresponding radicals, while the decomposition of HOOOH is most likely predominantly a "pericyclic" process involving one or more molecules of water acting as a bifunctional catalyst to produce water and singlet oxygen (Delta(1)O(2)).  相似文献   

10.
Absolute rate constants and Arrhenius parameters for hydrogen abstractions (from carbon) by the t-butoxyl radical ((t) BuO.) are reported for several hydrocarbons and tertiary amines in solution. Combined with data already in the literature, an analysis of all the available data reveals that most hydrogen abstractions (from carbon) by (t) BuO. are entropy controlled (i.e., TdeltaS > deltaH, in solution at room temperature). For substrates with C-H bond dissociation energies (BDEs) > 92 kcal/mol, the activation energy for hydrogen abstraction decreases with decreasing BDE in accord with the Evans-Polanyi equation, with alpha approximately 0.3. For substrates with C-H BDEs in the range from 79 to 92 kcal/mol, the activation energy does not vary significantly with C-H BDE. The implications of these results in the context of the use of (t) BuO. as a chemical model for reactive oxygen-centered radicals is discussed.  相似文献   

11.
Heterolytic and homolytic bond dissociation energies of the C4-H bonds in ten NADH models (seven 1,4-dihydronicotinamide derivatives, two Hantzsch 1,4-dihydropyridine derivatives, and 9,10-dihydroacridine) and their radical cations in acetonitrile were evaluated by titration calorimetry and electrochemistry, according to the four thermodynamic cycles constructed from the reactions of the NADH models with N,N,N',N'-tetramethyl-p-phenylenediamine radical cation perchlorate in acetonitrile (note: C9-H bond rather than C4-H bond for 9,10-dihydroacridine; however, unless specified, the C9-H bond will be described as a C4-H bond for convenience). The results show that the energetic scales of the heterolytic and homolytic bond dissociation energies of the C4-H bonds cover ranges of 64.2-81.1 and 67.9-73.7 kcal mol(-1) for the neutral NADH models, respectively, and the energetic scales of the heterolytic and homolytic bond dissociation energies of the (C4-H)(.+) bonds cover ranges of 4.1-9.7 and 31.4-43.5 kcal mol(-1) for the radical cations of the NADH models, respectively. Detailed comparison of the two sets of C4-H bond dissociation energies in 1-benzyl-1,4-dihydronicotinamide (BNAH), Hantzsch 1,4-dihydropyridine (HEH), and 9,10-dihydroacridine (AcrH(2)) (as the three most typical NADH models) shows that for BNAH and AcrH(2), the heterolytic C4-H bond dissociation energies are smaller (by 3.62 kcal mol(-1)) and larger (by 7.4 kcal mol(-1)), respectively, than the corresponding homolytic C4-H bond dissociation energy. However, for HEH, the heterolytic C4-H bond dissociation energy (69.3 kcal mol(-1)) is very close to the corresponding homolytic C4-H bond dissociation energy (69.4 kcal mol(-1)). These results suggests that the hydride is released more easily than the corresponding hydrogen atom from BNAH and vice versa for AcrH(2), and that there are two almost equal possibilities for the hydride and the hydrogen atom transfers from HEH. Examination of the two sets of the (C4-H)(.+) bond dissociation energies shows that the homolytic (C4-H)(.+) bond dissociation energies are much larger than the corresponding heterolytic (C4-H)(.+) bond dissociation energies for the ten NADH models by 23.3-34.4 kcal mol(-1); this suggests that if the hydride transfer from the NADH models is initiated by a one-electron transfer, the proton transfer should be more likely to take place than the corresponding hydrogen atom transfer in the second step. In addition, some elusive structural information about the reaction intermediates of the NADH models was obtained by using Hammett-type linear free-energy analysis.  相似文献   

12.
Reactions of differently substituted phenyl radicals with components of nucleic acids have been investigated in the gas phase. A positively charged group located meta with respect to the radical site was employed to allow manipulation of the radicals in a Fourier-transform ion cyclotron resonance mass spectrometer. All of these electrophilic radicals react with sugars via exclusive hydrogen atom abstraction, with adenine and uracil almost exclusively via addition (likely at the C8 and C5 carbons, respectively), and with the nucleoside thymidine by hydrogen atom abstraction and addition at C5 in the base moiety (followed by elimination of (*)CH(3)). These findings parallel the reactivity of the phenyl radical with components of nucleic acids in solution, except that the selectivity for addition is different. Like HO(*), the electrophilic charged phenyl radicals appear to favor addition to the C5-end of the C5-C6 double bond of thymine and thymidine, whereas the phenyl radical preferentially adds to C6. The charged phenyl radicals do not predominantly add to thymine, as the neutral phenyl radical and HO(*), but mainly react by hydrogen atom abstraction from the methyl group (some addition to C5 in the base followed by loss of (*)CH(3) also occurs). Adenine appears to be the preferred target among the nucleobases, while uracil is the least favored. A systematic increase in the electrophilicity of the radicals by modification of the radicals' structures was found to facilitate all reactions, but the addition even more than hydrogen atom abstraction. Therefore, the least reactive radicals are most selective toward hydrogen atom abstraction, while the most reactive radicals also efficiently add to the base. Traditional enthalpy arguments do not rationalize the rate variations. Instead, the rates reflect the radicals' electron affinities used as a measure for their ability to polarize the transition state of each reaction.  相似文献   

13.
14.
We report the direct spectroscopic observation of hydrogen atom transfer reactions from carbon to metals, in which homolytic cleavage of a C-H bond is accomplished at a single metal center. Laser flash photolysis (355 nm) of a solution of [Cp(CO)2Os]2 leads to homolysis of the Os-Os bond and formation of the osmium-centered radical, Cp(CO)2Os*, as observed by time-resolved infrared (TRIR) spectroscopy. DFT computations on Cp(CO)2Os* support this assignment. Continuous photolysis (lambda > 300 nm) of [Cp(CO)2Os]2 in the presence of excess 1,4-cyclohexadiene produces the osmium hydride Cp(CO)2OsH. The kinetics of this carbon-to-metal hydrogen atom transfer were examined by TRIR spectroscopy. The second-order rate constant for hydrogen atom transfer from 1,4-cyclohexadiene to Cp(CO)2Os* in hexane at 23 degrees C is kH = (2.1 +/- 0.2) x 106 M-1 s-1. The pKa of Cp(CO)2OsH was determined as 32.7 in CH3CN, and use of a thermochemical cycle provided an estimated lower limit of 82 kcal/mol for the Os-H bond dissociation energy, indicating that it is an exceptionally strong M-H bond. Photolysis of [Tp(CO)2Os]2 (Tp = hydridotris(pyrazolyl)borate) results in carbon-to-metal hydrogen atom transfers from even stronger C-H bonds (THF or toluene) and produces Tp(CO)2OsH.  相似文献   

15.
Detailed EPR and ENDOR experiments on the cocrystalline complex of 1-methyluracil:9-Ethyladenine (MUEA) have revealed that the major radiation-induced products observed at 10 K on MU are: MUEA1, a radical formed by net hydrogen abstraction from the N1-CH3 methyl group, MUEA2, the MU radical anion, and MUEA3, the C5 H-addition radical. The following four products were observed on the adenine moiety at 10 K, MUEA4, the N3 protonated adenine anion, MUEA5, the native adenine cation, MUEA6, the amino deprotonated adenine cation, and MUEA7, the C8 H-addition radical formed by net H-addition to C8 of the adenine base. The geometries, energetics, and hyperfine properties of all possible radicals of MU and EA, the native anions and cations, as well as radicals formed via net hydrogen atom abstraction (deprotonated cations) or addition (protonated anions) were investigated theoretically. All systems were optimized using the hybrid Hartree–Fock–density functional theory functional B3LYP, in conjunction with the 6-31G(d,p) basis set of Pople and co-workers. Calculations of the anisotropic hyperfine couplings for all the radicals observed in MUEA are presented and are shown to compare favorably with the experimentally measured hyperfine couplings. The calculated ionizations potentials indicate that EA would be the preferred oxidation site. In MUEA, both the adenine cation and its N4-deprotonated derivative were observed. The calculated electron affinities indicate that MU would be the preferred reduction site. In MUEA radical, MUEA2 is a uracil reduction product, however the protonation state of this radical could not be determined experimentally. Calculations suggest that MUEA2 is actually the C4=O protonated anion.  相似文献   

16.
The conversion of adamantane to adamantanols mediated by ferrate (FeO(4)(2)(-)), monoprotonated ferrate (HFeO(4)(-)), and diprotonated ferrate (H(2)FeO(4)) is discussed with the hybrid B3LYP density functional theory (DFT) method. Diprotonated ferrate is the best mediator for the activation of the C-H bonds of adamantane via two reaction pathways, in which 1-adamantanol is formed by the abstraction of a tertiary hydrogen atom (3 degrees ) and 2-adamantanol by the abstraction of a secondary hydrogen atom (2 degrees ). Each reaction pathway is initiated by a C-H bond cleavage via an H-atom abstraction that leads to a radical intermediate, followed by a C-O bond formation via an oxygen rebound step to lead to an adamantanol complex. The activation energies for the C-H cleavage step are 6.9 kcal/mol in the 1-adamantanol pathway and 8.4 kcal/mol in the 2-adamantanol pathway, respectively, at the B3LYP/6-311++G level of theory, whereas those of the second reaction step corresponding to the rebound step are relatively small. Thus, the rate-determining step in the two pathways is the C-H bond dissociation step, which is relevant to the regioselectivity for adamantane hydroxylation. The relative rate constant (3 degrees )/(2 degrees ) for the competing H-atom abstraction reactions is calculated to be 9.30 at 75 degrees C, which is fully consistent with an experimental value of 10.1.  相似文献   

17.
Time-resolved photoionization of the hydrogen atom product from the allyl radical, C3H5, dissociation with 115 kcal/mol total energy provides information on the unimolecular dissociation dynamics. Vibrationally hot ground-state allyl radicals in both low and high J-states are prepared by electronic excitation to selected rovibrational states of C-state allyl followed by internal conversion. The measured dissociation rates and kinetic energy release are independent of the allyl parent rotational energy and suggest that centrifugal effects are unimportant in allyl radical dissociation at 115 kcal/mol.  相似文献   

18.
This short review outlines the tandem mass spectrometric methods for the generation and analysis of transient nucleobase radicals relevant to deoxyribonucleic acid and ribonucleic acid damage. Radical hydrogen atom adducts to uracil, adenine, cytosine and N-methylcytosine were generated by femtosecond electron transfer to the corresponding gas-phase cations in fast beams at 8 keV kinetic energy. Radical unimolecular dissociations were monitored by product analysis following collisional ionization to cations or anions using neutralization-reionization mass spectrometry. The radical energetics and dissociation kinetics were further analyzed by mapping the potential energy surfaces by high-level ab initio calculations in combination with Rice-Remsberger-Kassel-Marcus calculations of unimolecular rate constants. This first- principles-based approach allows one to model radical dissociations occurring from doublet ground electronic states of radical intermediates, assign reaction mechanisms and derive quantitative branching ratios for dissociation channels that are in agreement with experiments. Theoretical analysis also provides distinction between radical dissociations occurring on the ground and excited electronic state potential energy surfaces. Specific characterization of excited state dissociations of nucleobase and other polyatomic radicals remains a challenging topic for both experimentalists and computational chemists.  相似文献   

19.
The oxygen insertion into C-H bonds (of methane, isobutane, and acetone) by dioxiranes (parent dioxirane and dimethyldioxirane) to give alcohols was studied with the DFT theory, using both restricted and unrestricted B3LYP methods, and 6-31G(d) and 6-311+G(d,p) basis sets to evaluate the feasibility of stepwise mechanisms and their competition with the concerted counterpart. Confirming previous results by other authors, we have located, with the RB3LYP method, concerted TSs in which the oxygen bound to be inserted interacts very strongly with the hydrogen atom and very weakly with the carbon atom of the C-H bond. These TSs nicely explain all the experimental observations (e.g., configuration retention at the chiral centers), but all of them exhibit an RHF --> UHF wave function instability that preclude considering them as genuine transition structures. We also were able to characterize, with UB3LYP methods, two alternative two-step processes that can lead to final products (alcohol + carbonyl compound) via singlet radical pair intermediates. For the first step of both processes we located genuine diradicaloid TSs, namely, TSs rad,coll and TSs rad,perp, that have stable wave functions. In TSs rad,coll the alkane C-H bond tends to be collinear with the breaking O(1)- - -O(2) bond while in TSs rad,perp the alkane C-H bond is almost perpendicular to the O(1)- - -O(2) bond. The first step, of both processes, can represent an example of a "molecule induced homolysis" reaction: collision between alkane and dioxirane brings about the homolytic cleavage of the dioxirane O-O bond and the hydrogen abstraction follows afterward to produce the diradicaloid TS that then falls down to a singlet radical pair. This hypothesis was fully confirmed by IRC analysis in the case of TSs rad,coll. The possible pathways that lead from the intermediate radical pair to final products are discussed as well as the hypothesis that the radical collinear TSs may collapse directly to products in a "one-step nonconcerted" process. However, diradical mechanisms cannot explain the experimental data as satisfactorily as the concerted pathway does. As for computational predictions about competition of diradical vs concerted mechanisms, they strongly depend (i) on the alkane C-H type, (ii) on whether gas phase or solution is considered, and (iii) on the basis set used for calculations. In short, the concerted TS benefits, with respect to the corresponding diradicaloid TSs, of alkyl substitution at the C-H center, solvation effects, and basis set extension. Actually, in the case of DMD reactions with methane and acetone, the diradicaloid TSs are always (both in gas phase and in solution and with both the basis sets used) strongly favored over their concerted counterpart. In the case of DMD reaction with isobutane tertiary C-H bond the large favor for the diradicaloid TSs over the concerted TS, predicted in gas phase by the B3LYP/6-31G(d) method, progressively decreases as a result of basis set extension and introduction of solvent effects: the higher theory level [B3LYP/6-311+G(d,p)] suggests that in acetone solution TS conc has almost the same energy as TS rad,perp while TS rad,coll resides only 2 kcal/mol higher.  相似文献   

20.
This work investigates the unimolecular dissociation of the 2-buten-2-yl radical. This radical has three potentially competing reaction pathways: C-C fission to form CH3 + propyne, C-H fission to form H + 1,2-butadiene, and C-H fission to produce H + 2-butyne. The experiments were designed to probe the branching to the three unimolecular dissociation pathways of the radical and to test theoretical predictions of the relevant dissociation barriers. Our crossed laser-molecular beam studies show that 193 nm photolysis of 2-chloro-2-butene produces 2-buten-2-yl in the initial photolytic step. A minor C-Cl bond fission channel forms electronically excited 2-buten-2-yl radicals and the dominant C-Cl bond fission channel produces ground-state 2-buten-2-yl radicals with a range of internal energies that spans the barriers to dissociation of the radical. Detection of the stable 2-buten-2-yl radicals allows a determination of the translational, and therefore internal, energy that marks the onset of dissociation of the radical. The experimental determination of the lowest-energy dissociation barrier gave 31 +/- 2 kcal/mol, in agreement with the 32.8 +/- 2 kcal/mol barrier to C-C fission at the G3//B3LYP level of theory. Our experiments detected products of all three dissociation channels of unstable 2-buten-2-yl as well as a competing HCl elimination channel in the photolysis of 2-chloro-2-butene. The results allow us to benchmark electronic structure calculations on the unimolecular dissociation reactions of the 2-buten-2-yl radical as well as the CH3 + propyne and H + 1,2-butadiene bimolecular reactions. They also allow us to critique prior experimental work on the H + 1,2-butadiene reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号