首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical behaviour of Doyle catalyst, dirhodium(II) tetrakis [methyl-2-oxopyrrolidine-5(S)-carboxylate] (Rh2(5S-MEPY)4), immobilised in graphite powder was evaluated preparing the carbon paste electrode, as well as its electrochemical properties in the presence (DCDE) and absence (DCE) of DNA. In both cases, one redox couple at 0.35 V vs. SCE in 0.5 mol l(-1) KCl solution at pH 7 and 10 mV s(-1) was observed. The resolution of the peak current in the voltammetric studies and other electrochemical properties were improved when the Doyle catalyst was immobilised in the presence of DNA. The estimated rate constants were of 17 and 26 s(-1) for a scan rate of 1 V s(-1) for DCE and DCDE, respectively. Furthermore, the interaction between rhodium carboxylates and electrolytes become more evident, suggesting a good hydrophilic and conductor character of this biopolymer.  相似文献   

2.
A new chiral β-amino alcohol, (s)-2-amino-1, 1-diphenyl-3-(2-naphthyl)-1-propanol and its use as a catalyst in the enantioselective reduction of prochiral ketones with borane were described.  相似文献   

3.
The kinetics of propene polymerization catalyzed by ansa-metallocenes were studied using quenched-flow techniques. Two catalyst systems were investigated, (SBI)ZrMe2/Al(i)Bu3/[Ph3C][CN[B(C6F5)3]2] (1:100:1) at 25.0 degrees C and (SBI)ZrCl(2)/methylalumoxane at 40.0 degrees C (Al:Zr = 2400:1) (SBI = rac-Me(2)Si(1-Indenyl)2). The aims of the study were to address fundamental mechanistic aspects of metallocene-catalyzed alkene polymerizations, catalyst initiation, the quantitative correlation between catalyst structure and the rate of chain propagation, and the nature of dormant states. One of the most important but largely unknown factors in metallocene catalysis is the distribution of the catalyst between dormant states and species actively involved in polymer chain growth. Measurements of polymer yield Y versus reaction time t for propene concentrations [M] = 0.15-0.59 mol L(-1) and zirconocene concentrations in the range [Zr] = (2.38-9.52) x 10(-5) mol L(-1) for the borate system showed first-order dependence on [M] and [Zr]. Up to t approximately 1 s, the half-life of catalyst initiation is comparable to the half-life of chain growth; that is, this phase is governed by non-steady-state kinetics. We propose a rate law which takes account of this and accurately describes the initial rates. Curve fitting of Y(t) data provides an apparent chain growth rate constant k(p)(app) on the order of 10(3) L mol(-1) s(-1). By contrast, the evolution with time of the number-average polymer molecular weight, which is independent of the concentration of catalyst involved, leads to a k(p) which is an order of magnitude larger, (17.2 +/- 1.4) x 10(3) L mol(-1) s(-1). The ratio k(p)(app)/k(p) = 0.08 indicates that under the given conditions only about 8% of the total catalyst is actively engaged in chain growth at any one time. The system (SBI)ZrCl(2)/methylalumoxane is significantly less active, k(p)(app) = 48.4 +/- 2.7 and k(p) = (6 +/- 2) x 10(2) L mol(-1) s(-1), while, surprisingly, the mole fraction of active species is essentially identical, 8%. Evidently, the energetics of the chain growth sequence are strongly modulated by the nature of the counteranion. Increasing the counteranion/zirconium ratio from 1:1 to 20:1 has no influence on catalyst activity. These findings are consistent with a model of closely associated ion pairs throughout the chain growth sequence. For the borate system, propagation is approximately 6000 times faster than initiation, while for the MAO catalyst, k(p)/k(i) approximately 800. Polymers obtained at 25 degrees C show 0.1-0.2 mol % 2,1-regioerrors, and end-group analysis identifies 2,1-misinsertions as the main cause for chain termination (66%), as compared to 34% for the vinylidene end groups. The results suggest that 2,1-regioerrors are a major contributor to the formation of dormant species, even at short reaction times.  相似文献   

4.
Chlorine dioxide-facilitated oxidation of the azo dye amaranth   总被引:1,自引:0,他引:1  
The oxidation reaction of amaranth (trisodium 2-hydroxy-1-(4-sulfonato-1-naphthylazo)naphthalene-3,6-disulfonate or AM(-)) by chlorine dioxide (ClO(2)) in aqueous conditions was investigated in detail. The major reaction products immediately after decolorization of AM(-) were 1,2-naphthoquinone disulfonate sodium salt and 1,4-napthalenedione. The reaction had first-order dependence on both AM(-) and ClO(2). The rate-limiting step involved the reaction between AM(-) and OH(-) ions. The role of hydroxide ion as a catalyst was established. The second-order rate constant increased with pH, from (19.8 ± 0.9) M(-1) s(-1) at pH 7.0, (97.1 ± 2.3) M(-1) s(-1) at pH 8.0 to (132.5 ± 2.8) M(-1) s(-1) at pH 9.0. In the pH range of 6.0-7.5, the catalytic constant for OH(-) ion was 4.0 × 10(9) M(-2) s(-1). The energy and entropy of activation values for the reaction were 50.0 kJ mol(-1) and -658.7 J K(-1) mol(-1), respectively. A probable reaction mechanism was elucidated and was validated by simulations.  相似文献   

5.
张国安  夏敏 《合成化学》2012,20(2):235-238,243
研究了3-(1-萘氧基)-1,2-环氧丙烷[(R,S)-1]在Salen Co(Ⅲ)催化下的水解动力学拆分(HKR)。以转化率和ee值为指标,考察了催化剂用量、底物用量、反应温度、反应时间、溶剂种类等对HKR反应的影响。最佳HKR条件为:(R,S)-1 10 mmol,w[Salen Co(Ⅲ)]=0.75%,THF 1 mL,水0.5 eq,于25℃水解40 h,(R,S)-1的转化率为49.5%,(S)-1的ee为99.5%。  相似文献   

6.
Using stopped flow and other spectroscopic techniques, the thermodynamic parameters of the coupling reaction between 1,3-dimesitylimidazolylidene and phenyl isothiocyanate were determined (H(o) = -96.1 kJ mol(-1) and ΔS(o) = -39.6 J mol(-1) K(-1)). On the basis of these data which indicated that the reaction was reversible (K(eq) = 5.94 × 10(14) M(-1) at 25 °C; k(f) = 252 M(-1) s(-1); k(r) = 4.24 × 10(-13) s(-1)), the adduct formed from the two aforementioned coupling partners was used as a latent catalyst to facilitate the [2 + 2 + 2] cyclotrimerization of phenyl isocyanate and the polymerization of DL-lactide.  相似文献   

7.
A novel, highly efficient, and stable water oxidation catalyst was prepared by a pH-controlled adsorption of Co(II) on ~10 nm diameter silica nanoparticles. A lower limit of ~300 s(-1) per cobalt atom for the catalyst turnover frequency in oxygen evolution was estimated, which attests to a very high catalytic activity. Electron microscopy revealed that cobalt is adsorbed on the SiO(2) nanoparticle surfaces as small (1-2 nm) clusters of Co(OH)(2). This catalyst is optically transparent over the entire UV-vis range and is thus suitable for mechanistic investigations by time-resolved spectroscopic techniques.  相似文献   

8.
By using Fourier transform near-infrared (NIR) absorption spectroscopy, the kinetic behaviors of quadricyclane isomerization, as catalyzed by anhydrous CuSO(4) in chloroform mixture with and without agitation, are presented. Given the acquired NIR spectra, the concentration decay of quadricyclane with the reaction time is determined with the aid of partial least-squares analysis. When the mixture is not agitated, the diffusion coefficients in chloroform are evaluated to be (3.8 +/- 0.1) x 10(-5) cm(2) s(-1) at 27 degrees C and (4.4 +/- 0.1) x 10(-5) cm(2) s(-1) at 39 degrees C. In the size-dependent experiments of the catalyst, the one-site and two-site coordinated conversion rate constants are further determined to be (8.5 +/- 5.9) x 10(-6) s(-1) A(-1) and (2.2 +/- 0.8) x 10(-8) s(-1) A(-2), respectively, at 27 degrees C and (1.3 +/- 0.8) x 10(-5) s(-1) A(-1) and (1.92 +/- 0.01) x 10(-6) s(-1) A(-2), respectively, at 39 degrees C. A denotes the total catalyst surface area per unit effective volume of solvent. Accordingly, the activation energies for one-site and two-site coordination are evaluated to be 24.8 and 286.2 kJ mol(-1), respectively. The reaction is dominated by one-site coordination (1:1 complex) between the reactant and the catalyst. Unless temperature increases, the two-site coordinated reaction may be ignored. In contrast, when analogous experiments are performed in the stirred solution, the diffusion factor is ignored but the conversion rate constants rise due to the increase of collision frequency. For instance, the one-site and two-site coordinated rate constants are increased to (1.7 +/- 1.4) x 10(-5) s(-1) A(-1) and (1.27 +/- 0.06) x 10(-5) s(-1) A(-2) at 39 degrees C. The two-site coordinated reaction rate is enhanced by a factor of 10. Thus, isomerization may proceed via both 1:1 and 1:2 coordination between the reactant and the catalyst. The Arrhenius plot yields the corresponding activation energies to be 24 +/- 3 and 275 +/- 3 kJ mol(-1). The activation energies remain constant, no matter whether the solution is agitated or not.  相似文献   

9.
以1,8-二氮杂双环[5,4,0]十一碳烯-7为催化剂,4,5-二丁氧基邻苯二甲腈为原料,用液相法合成了两种金属酞菁配合物——β-八(丁氧基)酞菁钴(1)和β-八(丁氧基)酞菁锌(2),其结构经UV-Vis和IR表征。采用浸渍法将1和2分别负载到有序介孔分子筛SBA-15上制得SBA-15负载金属酞菁催化剂SBA1-15和SBA2-15。以0.1 mol.L-1亚硫酸钠的氧化反应为探针反应,研究了常温常压、氧气气氛下,SBA1-15和SBA2-15的催化氧化活性,并考察了SBA1-15的用量对其催化活性的影响及重复利用性。结果表明,两种催化剂均具有良好的催化性能,在用量相同时,SBA1-15的催化氧化性能优于SBA2-15;SBA1-15的质量为溶液质量的0.16‰时,催化活性最佳,且可以重复使用。  相似文献   

10.
Poly(10-undecene-1-ol)s as precursors for potential polar macromonomers were synthesized by metallocene-catalyzed polymerization. For the use as macromonomers, polymerizable terminal double bonds are an important requirement and thus, the investigation of the end groups in the polymers was the main focus of this study. The influence of the catalyst and polymerization conditions on the chain length of the polymer backbone, the monomer conversion as well as the end group characteristics were analyzed. It was possible to find conditions for preparing poly(10-undecene-1-ol)s with terminal double bonds using the catalyst system Cp2ZrCl2/MAO. Two other chosen catalysts produced mainly internal double bonds. The poly(10-undecene-1-ol)s could be prepared as atactic or isotactic-rich materials depending on the catalyst used.  相似文献   

11.
The performance of the Ni-Co bimetallic catalyst was significantly improved by a novel H2 and CO2 (HCD) pretreatment in the dry reforming of methane compared with traditional H2 pretreatment. The effects of the HCD pretreatment operating conditions, such as pretreatment time, temperature, gas feeding ratio, and gas flow rate, on the catalytic performance of Ni-Co bimetallic catalyst were investigated. The optimal pretreatment time, temperature, gas feeding ratio (CH4/CO2), and gas flow rate were 0.5-1 h, 780-800 ℃, 0:10, and 175-200 mL·min-1, respectively. Biogas was simulated with CH4 and CO2 in a volume ratio of 1 and without any other diluted gas. The catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetry (TG) coupled to differential scanning calorimetry (DSC). In a 511 h stability test under the optimized operating conditions, the catalyst pretreated with both H2 and CO2 exhibited excellent stability. The average conversions of CH4 and CO2, selectivities for H2 and CO, and volume ratio of H2/CO were 96%, 97%, 98%, 99%, and 0.98, respectively. The average carbon deposition rate over the Ni-Co bimetallic catalyst was only about 0.2 mg·g-1·h-1. The characterization results revealed that the sintering speed of the metal greatly decreased with testing time, and the metal particle will not greatly sinter with further testing time. The amount of deposited carbon on the catalyst gradually decreased and growth of filamentous carbon over the surface of the catalyst could be inhibited. The performance of the Ni-Co bimetallic catalyst was significantly improved by a novel H2 and CO2 (HCD) pretreatment in the dry reforming of methane compared with traditional H2 pretreatment. The effects of the HCD pretreatment operating conditions, such as pretreatment time, temperature, gas feeding ratio, and gas flow rate, on the catalytic performance of Ni-Co bimetallic catalyst were investigated. The optimal pretreatment time, temperature, gas feeding ratio (CH4/CO2), and gas flow rate were 0.5-1 h, 780-800 ℃, 0:10, and 175-200 mL·min-1, respectively. Biogas was simulated with CH4 and CO2 in a volume ratio of 1 and without any other diluted gas. The catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetry (TG) coupled to differential scanning calorimetry (DSC). In a 511 h stability test under the optimized operating conditions, the catalyst pretreated with both H2 and CO2 exhibited excellent stability. The average conversions of CH4 and CO2, selectivities for H2 and CO, and volume ratio of H2/CO were 96%, 97%, 98%, 99%, and 0.98, respectively. The average carbon deposition rate over the Ni-Co bimetallic catalyst was only about 0.2 mg·g-1·h-1. The characterization results revealed that the sintering speed of the metal greatly decreased with testing time, and the metal particle will not greatly sinter with further testing time. The amount of deposited carbon on the catalyst gradually decreased and growth of filamentous carbon over the surface of the catalyst could be inhibited. Thereby, great catalytic activity and stability could be obtained during the dry reforming of methane reaction.  相似文献   

12.
The mechanism of the cycloisomerization of dimethyl diallylmalonate (1) catalyzed by the cationic palladium phenanthroline complex [(phen)Pd(Me)CNCH(3)](+)[BAr(4)](-) [Ar = 3,5-C(6)H(3)(CF(3))(2)] (2) has been investigated. Heating a solution of 1 and 2 (5 mol %) in DCE at 40 degrees C led to zero-order decay of 1 to approximately 80% conversion (k(obs) = (7.1 +/- 0.3) x 10(-7) M s(-1)) with formation of a 27:2.2:1.0 mixture of 3,3-bis(carbomethoxy)-1,5-dimethylcyclopentene (3), 4,4-bis(carbomethoxy)-1,2-dimethylcyclopentene (4), and 1,1-bis(carbomethoxy)-4-methyl-3-methylenecyclopentane (5) and traces ( approximately 3.5%) of ethyl-substituted carbocycles 6 of the chemical formula C(12)H(18)O(4). Cyclopentenes 3 and 4 were formed both kinetically (3:4 = 30:1 at 40 degrees C) and via secondary isomerization of 5 (3:4 = 1:2.5 at 40 degrees C); the kinetic pathway accounted for the 93% of cyclopentene formation at 40 degrees C. Carbocycles 6 were formed predominantly (> or =90%) within the first two catalyst turnovers as byproducts of catalyst activation. Stoichiometric reaction of 1 and 2 at room temperature for 1.5 h led to the isolation of the palladium cyclopentyl chelate complex [carbohydrate structure-see text] in 26% yield as a approximately 2:1 mixture of isomers. The structure of trans,trans-7 was determined by X-ray crystallography. Kinetic studies of the formation of 7 established the rate law: rate = k[1][2], where k = (2.1 +/- 0.3) x 10(-2) M(-1) s(-1) (Delta G(*)(298K) = 19.7 +/- 0.1 kcal mol(-1)) at 25 degrees C. Thermolysis of 7 at 50 degrees C formed carbocycles 6 in 65% yield by GC analysis. (1)H and (13)C NMR analysis of an active catalyst system generated from 1 and a catalytic amount of 2 led to the identification of the cyclopentyl chelate complex [carbohydrate structure-see text] as the catalyst resting state. Cycloisomerization of 1-2,6-d(2) formed predominantly (approximately 90%) 3,3-bis(carbomethoxy)-5-deuterio-1-(deuteriomethyl)-5-methylcyclopentene (3-d(2)); no significant (< or =10%) kinetic isotope effect or intermolecular H/D exchange was observed. Cycloisomerization of 1-3,3,5,5-d(4) formed a 1:2.6 mixture of 3,3-bis(carbomethoxy)-2,4,4-trideuterio-1,5-dimethylcyclopentene (3-d(3)) and 3,3-bis(carbomethoxy)-2,4,4-trideuterio-5-(deuteriomethyl)-1-methylcyclo pentene (3-d(4)); while no significant (< or =10%) kinetic isotope effect was detected, extensive intermolecular H/D exchange was observed. These data are consistent with a mechanism involving hydrometalation of an olefin of 1, intramolecular carbometalation, isomerization via reversible beta-hydride elimination/addition, and turnover-limiting displacement of the cyclopentenes from palladium.  相似文献   

13.
采用溶胶-凝胶法制备了TiO2-Al2O3复合载体,以柠檬酸(CA)为络合剂采用浸渍法制备了Ni2P负载的TiO2-Al2O3复合载体催化剂,并用X射线衍射(XRD)、N2吸附比表面积测定、H2程序升温氢还原(H2-TPR)、程序升温氧化(TPO)、X射线光电子能谱(XPS)技术对催化剂的结构和性质进行了表征,考察了CA/Ni摩尔比对在Ni2P/TiO2-Al2O3催化剂上进行的二苯并噻吩(DBT)加氢脱硫(HDS)性能的影响.结果表明:适量的CA可以丰富催化剂的孔道,提高催化剂的比表面积.当n(CA)/n(Ni)=2:1时,催化剂的比表面积达到126.75m2·g-1,与不加CA时相比,提高了57.05m2·g-1.调节n(CA)/n(Ni)能够改善活性相的分布,改变活性相的种类;引入CA使Ni和P前驱体的还原温度明显降低,促进活性相Ni2P的生成,一定程度上能够抑制催化剂表面炭的形成和沉积,提高其稳定性.n(CA)/n(Ni)=2:1时,催化剂具有最好的加氢脱硫活性,在360°C,3.0MPa,氢油比为500(V/V),液时体积空速为2.0h-1的条件下,二苯并噻吩转化率为99.5%,可将模拟油中硫含量由2%(w)降低到0.01%(w).  相似文献   

14.
A dinuclear Cu(II) complex of 1,3-bis-N(1)-(1,5,9-triazacyclododecyl)propane with an associated methoxide (2-Cu(II)(2):(-OCH(3))) was prepared, and its kinetics of reaction with an RNA model (2-hydroxypropyl-p-nitrophenyl phosphate (1, HPNPP)) and two DNA models (methyl p-nitrophenyl phosphate (3) and iso-butyl p-chlorophenyl phosphate (4)) were studied in methanol solution at (s)(s)pH 7.2 +/- 0.2. X-ray diffraction structures of 2-Cu(II)(2):(-OH)(H(2)O)(CF(3)SO(3)-)(3):0.5CH(3)CH(2)OCH(2)CH(3) and 2-Cu(II)(2):(-OH)((C(6)H(5)CH(2)O)(2)PO(2)-)(CF(3)SO(3)-)2 show the mode of coordination of the bridging -OH and H(2)O between the two Cu(II) ions in the first complex and bridging -OH and phosphate groups in the second. The kinetic studies with 1 and 3 reveal some common preliminary steps prior to the chemical one of the catalyzed formation of p-nitrophenol. With 3, and also with the far less reactive substrate (4), two relatively fast events are cleanly observed via stopped-flow kinetics. The first of these is interpreted as a binding step which is linearly dependent on [catalyst] while the second is a unimolecular step independent of [catalyst] proposed to be a rearrangement that forms a doubly Cu(II)-coordinated phosphate. The catalysis of the cleavage of 1 and 3 is very strong, the first-order rate constants for formation of p-nitrophenol from the complex being approximately 0.7 s(-1) and 2.4 x 10(-3) s(-1), respectively. With substrate 3, 2-Cu(II)(2):(-OCH(3)) exhibits Michaelis-Mentin kinetics with a k(cat)/K(M) value of 30 M(-1) s(-1) which is 3.8 x 10(7)-fold greater than the methoxide promoted reaction of 3 (7.9 x 10(-7) M(-1) s(-1)). A free energy calculation indicates that the binding of 2-Cu(II)(2):(-OCH(3)) to the transition states for 1 and 3 cleavage stabilizes them by -21 and -24 kcal/mol, respectively, relative to that of the methoxide promoted reactions. The results are compared with a literature example where the cleavage of 1 in water is promoted by a dinuclear Zn(II) catalyst, and the energetic origins of the exalted catalysis of the 2-Cu(II)(2) and 2-Zn(II)(2) methanol systems are discussed.  相似文献   

15.
关喆  郑莹  焦书科 《高分子学报》2001,27(6):779-782
以Al(i Bu) 3 为活化剂 ,对球形MgCl2 负载的MAO Et[Ind]2 ZrCl2 催化剂用于乙烯淤浆聚合的动力学进行了研究 .确定了动力学控制条件后 ,测定了聚合反应级数和表观活化能 ,用动力学外推法计算出活性中心浓度和链增长速率常数 ,用扫描电镜观察了聚合过程中聚合物形态的变化 ,发现聚合是在催化剂的次级粒子上进行 ,催化剂粒子无明显破碎  相似文献   

16.
Amberlite IRA 900 anion-exchange resin modified with manganese-tetrakis(sulphophenyl)-porphine has been used as a catalyst instead of peroxidase for the determination of hydrogen peroxide by the reaction 2H(2)O(2) + N,N-diethylaniline + 4-aminoantipyrine (catalyst)--> quinonoid dye (lambda(max) 550 nm) + 4H(2)O. The apparent molar absorptivity for hydrogen peroxide was 1.1 x 10(4) 1.mole(-1).cm(-1), coefficient of variation 0.7%. This value is approximately 84% of that obtained by the use of peroxidase as catalyst. Similar conditions to those in the enzymatic reaction were suitable for use of the modified resin as catalyst, and the results show it to be a good substitute for peroxidase in this reaction system.  相似文献   

17.
Methyl glycolate is a good solvent and can be used as feedstock for the synthesis of some important organic chemicals. Catalytic hydrogenation of dimethyl oxalate (DMO) over copper-silver catalyst supported on silica was studied. The Cu-Ag/SiO2 catalyst supported on silica sol was prepared by homogeneous deposition-precipitation of the mixture of aqueous cuprammonia complex and silica sol. The proper active temperature of Cu-Ag/SiO2 catalyst for hydrogenation of DMO was 523—623 K. The most preferable reaction conditions for methyl glycolate (MG) were optimized: temperature at 468—478 K, 40—60 mesh catalyst diameter, H2/DMO ratio 40, and 1.0 h-1 of LHSV.  相似文献   

18.
New azanucleosides were obtained using sulphated zirconia (ZS) as catalyst in the nucleophilic oxirane ring opening reaction of 1-allyl-3-(oxiran-2-ylmethyl) pyrimidine-2,4(1H,3H)-dione and 1-allyl-5-methyl-3-(oxiran-2-ylmethyl)-pyrimidine-2,4(1H,3H)-dione, with (S)-prolinol. The new templates were obtained with good yields following a route which exploits the reactivity of epoxides in the presence of sulphated zirconia as catalyst. The key step was carried out using microwave and solvent-free conditions and proceeds with high selectivity.  相似文献   

19.
The tetrahedral triphenylsiloxy complex MoO(2)(OSiPh(3))(2) (1) and its Lewis base adduct with 2,2'-bipyridine, MoO(2)(OSiPh(3))(2)(bpy) (2), were prepared and characterised by IR/Raman spectroscopy, and thermogravimetric analysis. Both compounds catalyse the epoxidation of cis-cyclooctene at 55 degrees C using tert-butylhydroperoxide (t-BuOOH) is decane as the oxidant, giving 1,2-epoxycyclooctane as the only product. The best results were obtained in the absence of a co-solvent (other than the decane) or in the presence of 1,2-dichloroethane, while much lower activities were obtained when hexane or acetonitrile were added. With no co-solvent, catalyst 1 (initial activity 272 mol x molMo(-1) x h(-1)for a catalyst:substrate: oxidant molar ratio of 1:100:150) is much more active than 2(initial activity 12 mol x molMo(-1) x h(-1)). The initial reaction rates showed first order dependence with respect to the initial concentration of olefin. With respect to the initial amount of oxidant, the rate order dependence for 1 (1.9) was higher than that for 2 (1.6).The dependence of the initial reaction rate on reaction temperature and initial amount of catalyst was also studied for both catalysts. The lower apparent activation energy of 1 (11 kcal x mol(-1)) as compared with 2 (20 kcal x mol(-1)) is in accordance with the higher activity of the former.  相似文献   

20.
采用自发沉积法、共沉淀法及浸渍法制备MnO_x/TiO_2催化剂,通过XRD、TEM、N2吸附-脱附、XPS、H_2-TPR、NH_3-TPD等一系列表征手段研究MnO_x/TiO_2催化剂的结构与性质,并考察MnO_x/TiO_2催化剂低温NH_3-SCR性能。结果表明,自发沉积法制备的MnO_x/Ti O2(s)催化剂具有完全非晶态结构,Mn和Ti之间存在强相互作用,较共沉淀法制备的MnO_x/TiO_2(c)及浸渍法制备的MnO_x/Ti O2(i)表现出更强的氧化还原能力。MnO_x/TiO_2(s)具有较高的比表面积、较多的表面酸量,有利于NH_3的吸附与活化。且表面高浓度的Mn4+离子及吸附氧,有利于将NO氧化为NO2,促进发生"fast-SCR"反应,进而使其表现出优异的低温脱硝性能。MnO_x/TiO_2(s)催化剂在150℃时NO的转化率高达92.8%,在150-350℃NO的转化率保持在90%以上,此外其还具备较强的抗H_2O和SO_2毒化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号