首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The addition of [N(CH(3))(4)]OH to a methanolic solution of FeCl(3) and thme (thme = 1,1,1-tris(hydroxymethyl)ethane) yielded [N(CH(3))(4)](2)[OFe(6)(H(-)(3)thme)(3)(OCH(3))(3)Cl(6)].2H(2)O (1). Crystal data: C(26)H(64)Cl(6)Fe(6)N(2)O(15), trigonal space group P31c, a = 12.459(2) ?, c = 18.077(4) ?, Z = 2. The complex anion exhibits the well-known &mgr;(6)-O-Fe(6)-(&mgr;(2)-OR)(12) structure with three &mgr;(2)-methoxo bridges, three triply deprotonated H(-)(3)thme ligands, where each alkoxo group bridges two Fe(III) centers, and six terminally coordinating Cl(-) ligands. In contrast to two previously described ferric complexes with an analogous structure of the complex core, compound 1 is stable in air. Variable-temperature magnetic susceptibility measurements established antiferromagnetic exchange coupling interactions with J(trans)(Fe-&mgr;(6)-O-Fe) = 24.5 cm(-)(1), J(cis)(Fe-&mgr;(2)-O(thme)-Fe) = 11.5 cm(-)(1), and J(cis)'(Fe-&mgr;(2)-OCH(3)-Fe) = 19.5 cm(-)(1). The unexpectedly high value for J(trans) is explained by means of a superexchange pathway and is discussed for a simplified model by using MO calculations at the extended Hückel level.  相似文献   

2.
While the reaction of [PW(11)O(39)](7-) with first row transition-metal ions M(n+) under usual bench conditions only leads to monosubstituted {PW(11)O(39)M(H(2)O)} anions, we have shown that the use of this precursor under hydrothermal conditions allows the isolation of a family of novel polynuclear discrete magnetic polyoxometalates (POMs). The hybrid asymmetric [Fe(II)(bpy)(3)][PW(11)O(39)Fe(2) (III)(OH)(bpy)(2)]12 H(2)O (bpy=bipyridine) complex (1) contains the dinuclear {Fe(micro-O(W))(micro-OH)Fe} core in which one iron atom is coordinated to a monovacant POM, while the other is coordinated to two bipyridine ligands. Magnetic measurements indicate that the Fe(III) centers in complex 1 are weakly antiferromagnetically coupled (J=-11.2 cm(-1), H=-JS(1)S(2)) compared to other {Fe(micro-O)(micro-OH)Fe} systems. This is due to the long distances between the iron center embedded in the POM and the oxygen atom of the POM bridging the two magnetic centers, but also, as shown by DFT calculations, to the important mixing of bridging oxygen orbitals with orbitals of the POM tungsten atoms. The complexes [Hdmbpy](2)[Fe(II)(dmbpy)(3)](2)[(PW(11)O(39))(2)Fe(4) (III)O(2)(dmbpy)(4)]14 H(2)O (2) (dmbpy=5,5'-dimethyl-2,2'-bipyridine) and H(2)[Fe(II)(dmbpy)(3)](2)[(PW(11)O(39))(2)Fe(4) (III)O(2)(dmbpy)(4)]10 H(2)O (3) represent the first butterfly-like POM complexes. In these species, a tetranuclear Fe(III) complex is sandwiched between two lacunary polyoxotungstates that are pentacoordinated to two Fe(III) cations, the remaining paramagnetic centers each being coordinated to two dmbpy ligands. The best fit of the chi(M)T=f(T) curve leads to J(wb)=-59.6 cm(-1) and J(bb)=-10.2 cm(-1) (H=-J(wb)(S(1)S(2)+S(1)S(2*)+S(1*)S(2)+S(1*)S(2*))-J(bb)(S(2)S(2*))). While the J(bb) value is within the range of related exchange parameters previously reported for non-POM butterfly systems, the J(wb) constant is significantly lower. As for complex 1, this can be justified considering Fe(w)--O distances. Finally, in the absence of a coordinating ligand, the dimeric complex [N(CH(3))(4)](10)[(PW(11)O(39)Fe(III))(2)O]12 H(2)O (4) has been isolated. In this complex, the two single oxo-bridged Fe(III) centers are very strongly antiferromagnetically coupled (J=-211.7 cm(-1), H=-JS(1)S(2)). The electrochemical behavior of compound 1 both in dimethyl sulfoxide (DMSO) and in the solid state is also presented, while the electrochemical properties of complex 2, which is insoluble in common solvents, have been studied in the solid state.  相似文献   

3.
The syntheses, crystal structures, and magnetic characterizations of three new hexanuclear iron(III) compounds are reported. Known [Fe(6)O(2)(OH)(2)(O(2)CBu(t))(10)(hep)(2)] (1) is converted to new [Fe(6)O(2)(OH)(O(2)CBu(t))(9)(hep)(4)] (3) when treated with an excess of 2-(2-hydroxyethyl)-pyridine (hepH). Similarly, the new compound [Fe(6)O(2)(OH)(2)(O(2)CPh)(10)(hep)(2)] (2), obtained from the reaction of [Fe(3)O(O(2)CPh)(6)(H(2)O)(3)] with hepH, is converted to [Fe(6)O(2)(OH)(O(2)CPh)(9)(hep)(4)] (4) when treated with an excess of hepH. This can be reversed by recrystallization from MeCN. The cores of the four Fe(6) complexes all comprise two triangular [Fe(3)(mu(3)-O)(O(2)CR)(3)(hep)](+3) units connected at two of their apices by two sets of bridging ligands. However, 1 and 2 differ slightly from 3 and 4 in the precise way the two Fe(3) units are linked together. In 1 and 2, the two sets of bridging ligands are identical, consisting of one mu-hydroxo and two mu-carboxylate groups bridging each Fe(2) pair, i.e., a (mu-OH(-))(mu-O(2)CR(-))(2) set. In contrast, 3 and 4 have two different sets of bridging ligands, a (mu-OH(-))(mu-O(2)CR(-))(2) set as in 1 and 2, and a (mu-OR(-))(2)(mu-O(2)CR(-)) set, where RO(-) refers to the alkoxide arm of the hep(-) chelate. Variable-field and -temperature dc magnetization measurements establish that 1 and 2 have S = 5 ground states and significant and positive zero-field splitting parameters (D), whereas 3 and 4 have S = 0 ground states. This dramatic difference of 10 unpaired electrons in the ground state S values for near-isomeric compounds demonstrates an acute sensitivity of the magnetic properties to small structural changes. The factors leading to this have been quantitatively analyzed. The semiempirical method ZILSH, based on unrestricted molecular orbital calculations, was used to obtain initial estimates of the Fe(2) pairwise exchange interaction constants (J). These calculated values were then improved by fitting the experimental susceptibility versus T data, using a genetic algorithm approach. The final J values were then employed to rationalize the observed magnetic properties as a function of the core topologies and the presence of spin frustration effects. The large difference in ground state spin value was identified as resulting from a single structural difference between the two types of complexes, the different relative dispositions (cis vs trans) of two frustrated exchange pathways. In addition, use of the structural information and corresponding J values allowed a magnetostructural correlation to be established between the J values and both the Fe-O bond distances and the Fe-O-Fe angles at the bridging ligands.  相似文献   

4.
The reaction of the mixed-valent metal triangles [Mn(3)O(O(2)CR)(6)(py)(3)] (R = CH(3), Ph, C(CH(3))(3)) with the tripodal ligands H(3)thme (1,1,1-tris(hydroxymethyl)ethane) and H(3)tmp (1,1,1-tris(hydroxymethyl)propane) in MeCN, produces a family of manganese rodlike complexes whose structures are all derived from a series of edge-sharing triangles. Variable temperature direct current (dc) magnetic susceptibility data were collected for all complexes in the 1.8-300 K temperature range in fields up to 7.0 T. Complex 1, [Mn(12)O(4)(OH)(2)(PhCOO)(12)(thme)(4)(py)(2)], has an S = 7 ground state with the parameters g = 1.98 and D = -0.13 K. Complex 2, [Mn(8)O(4)((CH(3))(3)CCO(2))(10)(thme)(2)(py)(2)] has a ground state of S = 6, with g = 1.81 and D = -0.36 K. Complex 3, [Mn(7)O(2)(PhCO(2))(9)(thme)(2)(py)(3)], has a spin ground states of S = 7 with the parameters g = 1.78 and D = -0.20 K. The best fit for complex 4, [Mn(6)((CH(3))(3)CCO(2))(8)(tmp)(2)(py)(2)], gave a spin ground state of S = 3 with the parameters g = 1.73 and D = -0.75 K, but was of poorer quality than that normally obtained. The presence of multiple Mn(2+) ions in the structure of 4 leads to the presence of low-lying excited states with energy levels very close to the ground state, and in the case of complex 5, [Mn(6)(CH(3)CO(2))(6)(thme)(2)(H(2)tea)(2)], no satisfactory fit of the data was obtained. DFT calculations on 4 and 5 indicate complexes with spin ground states of S = 4 and S = 0 respectively, despite their topological similarities. Single-crystal hysteresis loop and relaxation measurements show complex 1 to be a SMM.  相似文献   

5.
The homoleptic complexes [Ph(4)P](2)[Co[N(CN)(2)](4)] and [Ph(4)P][M[N(CN)(2)](3)] [M = Co, Mn] have been structurally as well as magnetically characterized. The complexes containing [M[N(CN)(2)](4)](2-) form 1-D chains, which are bridged via a common dicyanamide ligand in [M[N(CN)(2)](3)](-) to form a 2-D structure. The five-atom [NCNCN](-) bridging ligands lead to weak magnetic coupling along a chain. The six [NCNCN](-) ligands lead to a (4)T(1g) ground state for Co(II) which has an unquenched spin-orbit coupling that is reflected in the magnetic properties. Long-range magnetic ordering was not observed in any of these materials.  相似文献   

6.
Ni ZH  Kou HZ  Zheng L  Zhao YH  Zhang LF  Wang RJ  Cui AL  Sato O 《Inorganic chemistry》2005,44(13):4728-4736
Two new cyano-bridged heterobinuclear complexes, [Mn(II)(phen)2Cl][Fe(III)(bpb)(CN)2] x 0.5CH3CH2OH x 1.5H2O (1) and [Mn(II)(phen)2Cl][Cr(III)(bpb)(CN)2] x 2H2O (2) [phen = 1,10-phenanthroline; bpb(2-) = 1,2-bis(pyridine-2-carboxamido)benzenate], and four novel azido-bridged Mn(II) dimeric complexes, [Mn2(phen)4(mu(1,1)-N3)2][M(III)(bpb)(CN)2]2 x H2O [M = Fe (3), Cr (4), Co (5)] and [Mn2(phen)4(mu(1,3)-N3)(N3)2]BPh4 x 0.5H2O (6), have been synthesized and characterized by single-crystal X-ray diffraction analysis and magnetic studies. Complexes 1 and 2 comprise [Mn(phen)2Cl]+ and [M(bpb)(CN)2]- units connected by one cyano ligand of [M(bpb)(CN)2]-. Complexes 3-5 are doubly end-on (EO) azido-bridged Mn(II) binuclear complexes with two [M(bpb)(CN)2]- molecules acting as charge-compensating anions. However, the Mn(II) ions in complex 6 are linked by a single end-to-end (EE) azido bridging ligand with one large free BPh4(-) group as the charge-balancing anion. The magnetic coupling between Mn(II) and Fe(III) or Cr(III) in complexes 1 and 2 was found to be antiferromagnetic with J(MnFe) = -2.68(3) cm(-1) and J(MnCr) = -4.55(1) cm(-1) on the basis of the Hamiltonian H = -JS(Mn)S(M) (M = Fe or Cr). The magnetic interactions between two Mn(II) ions in 3-5 are ferromagnetic in nature with the magnetic coupling constants of 1.15(3), 1.05(2), and 1.27(2) cm(-1) (H = -JS(Mn1)S(Mn2)), respectively. The single EE azido-bridged dimeric complex 6 manifests antiferromagnetic interaction with J = -2.29(4) cm(-1) (H = -JS(Mn1)S(Mn2)). Magneto-structural correlationship on the EO azido-bridged Mn(II) dimers has been investigated.  相似文献   

7.
The electronic structure of so-called 'xenophilic' clusters, which contain both organometallic fragments and Werner-type paramagnetic transition metal centres, presents a challenge to simple theories of bonding. Density functional theory shows clearly that the cluster Mn(2)(thf)(4)(Fe(CO)(4))(2) is best described as an exchange-coupled Mn(II)(2) dimer, the closed-shell organometallic [Fe(CO)(4)](2-) fragments acting simply as bridging ligands. The high-spin configuration of the Mn(II) ions leads to single occupation of the Mn-Fe σ* orbitals and therefore substantially weaker metal-metal bonding than in conventional low-valent organometallic clusters. The transition metal fragments are effective mediators of superexchange (J(calc) = -44 cm(-1)), leading to the measured effective magnetic moment of ~5 μ(B) at 300 K, considerably lower than the limiting value of 8.37 μ(B) for two uncoupled S = 5/2 Mn(II) centres.  相似文献   

8.
The first examples of polymeric homoleptic iron chalcogenolato complexes (1)(∞)[Fe(SePh)(2)] and (1)(∞)[Fe(SeMes)(2)] (Ph = phenyl = C(6)H(5), Mes = mesityl = C(6)H(2)-2,4,6-(CH(3))(3)) have been both prepared by reaction of [Fe(N(SiMe(3))(2))(2)] with two equivalents of HSeR (R = Ph, Mes) while (1)(∞)[Fe(SePh)(2)] was found to be also easily accessible through reactions of either FeCl(2), Fe(OOCCH(3))(2) or FeCl(3) with PhSeSiMe(3) in THF. In the crystal, the two compounds form one-dimensional chains with bridging selenolate ligands comprising distinctly different Fe-Se-Fe bridging angles, namely 71.15-72.57° in (1)(∞)[Fe(SePh)(2)] and 91.80° in (1)(∞)[Fe(SeMes)(2)]. Magnetic measurements supported by DFT calculations reveal that this geometrical change has a pronounced influence on the antiferromagnetic exchange interactions of the unpaired electrons along the chains in the two different compounds with a calculated magnetic exchange coupling constant of J = -137 cm(-1) in (1)(∞)[Fe(SePh)(2)] and J = -20 cm(-1) in (1)(∞)[Fe(SeMes)(2)]. In addition we were able to show that the ring molecule [Fe(SePh)(2)](12) which is a structural isomer of (1)(∞)[Fe(SePh)(2)] behaves magnetically similar to the latter one. Investigations by powder XRD reveal that the ring molecule is only a metastable intermediate which converts in THF completely to form (1)(∞)[Fe(SePh)(2)]. Thermal gravimetric analysis of (1)(∞)[Fe(SePh)(2)] under vacuum conditions shows that the compound is thermally labile and already starts to decompose above 30 °C in a two step process under cleavage of SePh(2) to finally form at 250 °C tetragonal PbO-type FeSe. The reaction of (1)(∞)[Fe(SePh)(2)] with the Lewis base 1,10-phenanthroline yielded, depending on the conditions, the octahedral monomeric complexes [Fe(SePh)(2)(1,10-phen)(2)] and [Fe(1,10-phen)(3)][Fe(SePh)(4)].  相似文献   

9.
Three new homo- and heterometallic hexanuclear complexes [Mn(2)M(II)(4)O(2)(PhCOO)(10)(DMF)(4)] (with M = Mn (1), Co (2) or Ni (3) and DMF = dimethylformamide) have been synthesized by redox generation of benzoate ligands from benzaldehyde in a one-pot reaction. All of the compounds are isostructural and crystallize in the I-42d space group of the tetragonal system, data for 1: a = 27.2249(8) Angstroms, c = 25.5182(5) Angstroms, R1 = 0.0681. The crystal structure contains isolated molecules. Each molecule consists of 2 x Mn(III) surrounded by four M(II) ions to form two edge-sharing OMn(2)M(2) tetrahedra giving rise to the [Mn(2)M(4)O(2)] core. The coordination sphere of each metal is completed by the bridging benzoate ligands and DMF molecules. The magnetic susceptibilities of 1-3 have been measured in the 1.8 K < T < 300 K temperature range. The magnetic susceptibilities for 1 and 2 pass through a broad maximum at low temperature which is characteristic of the diamagnetic ground state, while for 3 no maximum is detected down to 1.8 K. The magnetic data have been interpreted quantitatively for 1 and 3 on the basis of spin exchange interactions between the metallic centers (spin Hamiltonian for a pair being H(AB) = -J(AB) S(A).S(B)). Single-crystal measurements on [Mn(6)O(2)(PhCOO)(10)(CH(3)CN)(4)] (4) show that significant magnetic anisotropy develops at low temperature.  相似文献   

10.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

11.
The reactions of HgI(2) with the semirigid ditopic ligand 1,3-bis(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene (bbimms) afforded three new complexes, [Hg(2)(mu-I)(2)I(2)(bbimms)] (1), [Hg(2)I(4)(bbimms)(2)] (2), and catena-poly[HgI(2)(bbimms)] (3). The ligand and all complexes have been structurally characterized by single-crystal X-ray diffraction. 1 is a triply bridged dinuclear complex comprised of two Hg(II) ions, one bridging ligand, two bridging I(-) anions, and two terminal I(-) anions. 2 is a dinuclear metallamacrocycle comprised of two Hg(II) ions, two bridging ligands, and four terminal I(-) anions, while 3 is a helical chain with the repeating unit of HgI(2)(bbimms). 2 and 3 can be classified as supramolecular isomers, and both are related to the triply bridged precursor 1 via the addition of one more ligand in a ring-opening process.  相似文献   

12.
Two new cyano-bridged one-dimensional heterobimetallic coordination polymers, [(bpca)(2)Fe(III)(2)(CN)(6)Cu(H(2)O)(2).1.5H(2)O](n)() (2) and [(bpca)Fe(III)(CN)(3)Cu(bpca)(H(2)O).H(2)O](n)() (3), and a trinuclear complex, [(bpca)(2)Fe(III)(2)(CN)(6)Mn(CH(3)OH)(2)(H(2)O)(2)].2H(2)O (4), have been synthesized using the tailored tricyanometalate precursor (Bu(4)N)[Fe(bpca)(CN)(3)].H(2)O (1) (Bu(4)N(+) = tetrabutylammonium cation; bpca = bis(2-pyridylcarbonyl)amidate anion) as a building block and structurally characterized. In complex 2, the Cu(II) ions are six-coordinated in an elongated distorted octahedral environment, and they are linked by distorted octahedrons of [Fe(bpca)(CN)(3)](-) to form 1D chain of squares. Complex 3 is an unexpected chiral heterobimetallic helical chain complex, in which the helical chain consists of the asymmetric unit of [(bpca)Fe(CN)(3)Cu(bpca)(H(2)O)]. In complex 4, there are two independent trinuclear clusters in one asymmetric unit, and the coordination modes of the two methanol and two water molecules coordinating to the central Mn(II) ion are different (cis and trans). Complex 2 shows metamagnetic behavior with a Neel temperature of T(N) = 2.2 K and a critical field of 250 Oe at 1.8 K, where the cyanides mediate the intrachain ferromagnetic coupling between the Cu(II) and Fe(III) ions. Complex 3 shows ferromagnetic coupling between Cu(II) and Fe(III) ions, the best-fit for chi(M)T versus T using a 1D alternating chain model leads to the parameters J(1) = 7.9(3) cm(-)(1), J(2) = 1.03(2) cm(-)(1), and g = 2.196(3). Complex 4 exhibits ferrimagnetic behavior caused by the noncompensation of the local interacting spins (S(Mn) = 5/2 and S(Fe) = 1/2) which interact antiferromagnetically through bridging cyano groups.  相似文献   

13.
Dinuclear iron(II)-cyanocarbonyl complex [PPN](2)[Fe(CN)(2)(CO)(2)(mu-SEt)](2) (1) was prepared by the reaction of [PPN][FeBr(CN)(2)(CO)(3)] and [Na][SEt] in THF at ambient temperature. Reaction of complex 1 with [PPN][SEt] produced the triply thiolate-bridged dinuclear Fe(II) complex [PPN][(CN)(CO)(2)Fe(mu-SEt)(3)Fe(CO)(2)(CN)] (2) with the torsion angle of two CN(-) groups (C(5)N(2) and C(3)N(1)) being 126.9 degrees. The extrusion of two sigma-donor CN(-) ligands from Fe(II)Fe(II) centers of complex 1 as a result of the reaction of complex 1 and [PPN][SEt] reflects the electron-rich character of the dinuclear iron(II) when ligated by the third bridging ethylthiolate. The Fe-S distances (2.338(2) and 2.320(3) A for complexes 1 and 2, respectively) do not change significantly, but the Fe(II)-Fe(II) distance contracts from 3.505 A in complex 1 to 3.073 A in complex 2. The considerably longer Fe(II)-Fe(II) distance of 3.073 A in complex 2, compared to the reported Fe-Fe distances of 2.6/2.62 A in DdHase and CpHase, was attributed to the presence of the third bridging ethylthiolate, instead of pi-accepting CO-bridged ligand as observed in [Fe] hydrogenases. Additionally, in a compound of unusual composition ([Na.(5)/(2)H(2)O][(CN)(CO)(2)Fe(mu-SEt)(3)Fe(CO)(2)(CN)])(n)((1)/(2)O(Et)(2))(n) (3), the Na(+) cations and H(2)O molecules combining with dinuclear [(CN)(CO)(2)Fe(mu-SEt)(3)Fe(CO)(2)(CN)](-) anions create a polymeric framework wherein two CN(-) ligands are coordinated via CN(-)-Na(+)/CN(-)-(Na(+))(2) linkages, respectively.  相似文献   

14.
The tetranuclear complexes [Fe(4)(pypentO)(pym)(3)(Oac)(NCS)(3)] x 1.5EtOH (1), [Fe(4)(pypentO)(pym)(Oac)(2)(NCS)(2)(MeO)(2)(H(2)O)] x H(2)O (2), [Fe(2)(pypentO)(NCO)(3)](2) (3), and [Fe(2)(pypentO)(N(3))(3)](2) (4) have been prepared, and their structure and magnetic properties have been studied (pypentOH = 1,5-bis[(2-pyridylmethyl)amino]pentan-3-ol, pymH = 2-pyridylmethanol). The X-ray diffraction analysis of 1 (C(43)H(53)N(10)O(7.5)S(3)Fe(4), monoclinic, P2(1)/n, a = 11.6153(17) A, b = 34.391(17) A, c = 14.2150(18) A, beta = 110.88(5) degrees, V = 5305(3) A(3), Z = 4) and 2 (C(31)H(45)N(7)O(10)S(2)Fe(4), monoclinic, C2/c, a = 19.9165(17) A, b = 21.1001(12) A, c = 21.2617(19) A, beta = 104.441(10) degrees, V = 8652.7(12) A(3), Z = 8) showed a Fe(4)O(4) cubane-like arrangement of four iron(II) atoms, four mu(3)-O bridging ligands, one (1) or two (2) syn-syn bridging acetates. The X-ray diffraction analysis of 3 (C(40)H(46)N(14)O(8)Fe(4), monoclinic, P2(1)/c, a = 11.7633(18) A, b = 18.234(3) A, c = 10.4792(16) A, beta = 99.359(18) degrees, V = 2217.7(6) A(3), Z = 2) and 4 (C(34)H(46)N(26)O(2)Fe(4), monoclinic, P2(1)/c, V = 4412.4(10) A(3), a = 23.534(3) A, b = 18.046(2) A, c = 10.4865(16) A, beta = 97.80(2) degrees, Z = 4) showed a zigzag bis-dinuclear arrangement of four iron(II) cations, two mu(2)-O bridging pypentO ligands, four mu(2)-N-cyanato bridging ligands (3) or four end-on azido bridging ligands (4): they are the first examples of cyanato and azido bridged discrete polynuclear ferrous compounds, respectively. The M?ssbauer spectra of 1 are consistent with four different high-spin iron(II) sites in the Fe(4)O(4) cubane-type structure. The M?ssbauer spectra of 3 are consistent with two high-spin iron(II) sites (N(5)O and N(4)O). Below 190 K, the M?ssbauer spectra of 4 are consistent with one N(5)O and two N(4)O high-spin iron(II) sites. The temperature dependence of the magnetic susceptibility was fitted with J(1) approximately 0 cm(-1), J(2) = -1.3 cm(-1), J(3) = 4.6 cm(-1), D = 6.4 cm(-1), and g = 2.21 for 1; J(1) = 2.6 cm(-1), J(2) = 2.5 cm(-1), J(3) = - 5.6 cm(-1), D = 4.5 cm(-1), and g = 2.09 for 2; J(1) = 1.5 cm(-1), J(2) = 0.2 cm(-1), D = - 5.6 cm(-1), D' = 4.5 cm(-1), and g = 2.14 for 3; and J(1) = - 2.6 cm(-1), J(2) = 0.8 cm(-1), D= 6.3 cm(-1), D' = 1.6 cm(-1), and g = 2.18 for 4. The differences in sign among the J(1), J(2), and J(3) super-exchange interactions indicate that the faces including only mu(3)-OR bridges exhibit ferromagnetic interactions. The nature of the ground state in 1-3 is confirmed by simulation of the magnetization curves at 2 and 5 K. In the bis-dinuclear iron(II) compounds 3 and 4, the J(2) interaction resulting from the bridging of two Fe(2)(pypentO)X(3) units through two pseudo-halide anions is ferromagnetic in 3 (X = mu(2)-N-cyanato) and may be either ferro- or antiferromagnetic in 4 (X = end-on azido). The J(1) interaction through the central O(alkoxo) and pseudo-halide bridges inside the dinuclear units is ferromagnetic in 3 (X = mu(2)-N-cyanato) and antiferromagnetic in 4 (X = end-on azido). In agreement with the symmetry of the two Fe(II) sites in complexes 3 and 4, D (pentacoordinated sites) is larger than D' (octahedral sites).  相似文献   

15.
Two new iron-sulfur carbonyl complexes, [Fe2(SC6H4Cl)2(CO)6]·0.5(Et2O) 1 and [Fe3(SC6H4NH2)6(CO)6]·2(MeOH) 2, have been prepared and characterized by elemental analysis, IR spectra and single-crystal X-ray diffraction. Crystal data for 1: monoclinic, C2/c, a = 18.4439(8), b = 11.0999(5), c = 25.1830(10)(A), β = 97.0370(10)o, V = 5116.8(4)(A)3, Z = 8, C20H13Cl2Fe2O6.50S2, Mr = 604.02, Dc = 1.568 g/cm3, μ = 1.540 mm-1, F(000) = 2424, the final R = 0.0545 and wR = 0.1454 for 3443 observed reflections with I > 2σ(I); 2: monoclinic, P21/n, a = 12.350, b = 26.3050(11), c = 16.057(A),β = 97.891(3)°, V = 5166.9(2)(A)3, Z = 4, C44H44Fe3N6O8S6, Mr = 1144.76, Dc = 1.472 g/cm3, μ = 1.128 mm-1, F(000) = 2352, the final R = 0.0442 and wR = 0.1197 for 7978 observed reflections with I > 2σ(I). Complex 1 contains one iron dimer, in which two tricarbonyliron(I) fragments are bridged together by two 4-chlorophenylthiolate ligands, whereas complex 2 contains a linear tri-iron cluster, in which two terminal tricarbonyliron(II) fragments and the central Fe(II) atom are linked together by six 4-aminophenylthiolate bridging ligands.  相似文献   

16.
Zhou JH  Cheng RM  Song Y  Li YZ  Yu Z  Chen XT  Xue ZL  You XZ 《Inorganic chemistry》2005,44(22):8011-8022
Novel polynuclear Cu(II) complexes containing derivatives of 1,2,4-trizaole and pivalate ligands, [Cu(3)(mu(3)-OH)(mu-adetrz)(2)(piv)(5)(H(2)O)].6.5H(2)O (1) (adetrz = 4-amino-3,5-diethyl-1,2,4-triazole, piv = pivalate), [Cu(4)(mu(3)-OH)(2)(mu-atrz)(2)(mu-piv)(4)(piv)(2)].2MeOH.H(2)O (2) (atrz = 4-amino-1,2,4-triazole), [Cu(4)(mu(3)-OH)(2)(mu-tbtrz)(2)(mu-piv)(2)(piv)(4)].4H(2)O (3) (tbtrz = 4-tert-butyl-1,2,4-trizaole), and [Cu(4)(mu(3)-O)(2)(mu-admtrz)(4)(admtrz)(2)(mu-piv)(2)(piv)(2)].2[Cu(2)(mu-H(2)O)(mu-admtrz)(piv)(4)].13H(2)O [4 = 4a.2(4b).13H(2)O; admtrz = 4-amino-3,5-dimethyl-1,2,4-triazole], have been prepared and structurally characterized. 1 is an asymmetrical triangular complex containing a [Cu(3)(mu(3)-OH)] core with two Cu---Cu edges spanned by bridging adetrz ligands. 2, 3, and 4a are novel tetranuclear compounds containing a [Cu(4)(mu(3)-O)(2)] or [Cu(4)(mu(3)-OH)(2)] core with Cu---Cu edges spanned by bridging 1,2,4-triazole or pivalate ligands. 4b is a dinuclear compound with one admtrz and one water bridge, and it is the first dinuclear Cu(II) triazole complex with one bridging water molecule. 1 is one of few reported triangular Cu(II) complexes with derivatives of 1,2,4-triazole, while 2, 3, and 4a are the first group of the nonlinear tetranuclear Cu(II) compounds with derivatives of 1,2,4-triazole. Variable-temperature magnetic susceptibility studies on the powder samples of 1-3 reveal the overall antiferromagnetic coupling between Cu(II) ions with J values of -55.6 to -12.8 cm(-1) (1), -216.4 to 0 cm(-1) (2), and -259.8 to 4.8 cm(-1) (3).  相似文献   

17.
A new one-dimensional polynuclear copper(II) complex [Cu(2)(mu(1,3)-SCN)(2)(mu'(1,3)-SCN)(2)(MPyO)(2)](n)(where MPyO = 4-methylpyridine N-oxide) has been synthesized and its crystal structure determined by X-ray crystallography. In the complex there exist two kinds of bridging coordination modes, namely, mu(1,3)-SCN(-) equatorial-equatorial (EE) bridging ligand and micro'(1,3)-SCN(-) equatorial-axial (EA) bridging ligand. Two micro(1,3)-SCN(-) EE bridging ligands coordinate two copper(II) ions in a binuclear unit, and the S atoms from the micro'(1,3)-SCN(-) EA bridging ligands as axial coordinated atoms link the binuclear units into one-dimensional chains. The ESR spectra have been investigated, and variable temperature (4-300 K) magnetic measurements were analyzed using a binuclear Cu(ii) magnetic interaction formula and indicate the existence of strong antiferromagnetic coupling with 2J=- 216.00 cm(-1) between bridged copper(II) ions. Density functional calculations have been carried out on this binuclear unit, yielding a similar singlet-triplet splitting. The mechanism of strong antiferromangetic interaction is revealed according to the calculations.  相似文献   

18.
Two new binuclear metal complexes supported by 1,4,8-triazacycloundecane (tacud) are reported. [Fe(2)(tacud)(2)(μ-Cl)(2)Cl(2)] (1) and [Mn(2)(tacud)(2)(μ-Cl)(2)Cl(2)] (2) are isomorphs consisting of bis(μ-chloro) bridged metal centers along with terminal chloro groups and tacud ligands. Both compounds 1 and 2 crystallize in the P1 space group. For 1, a = 7.7321(12) ?, b = 7.8896(12) ?, c = 11.4945(17) ?, α = 107.832(2)°, β = 107.827(2)°, γ = 92.642(2)°, V = 627.85(17) ?(3) and Z = 1. For 2, a = 7.7607(12) ?, b = 7.9068(12) ?, c = 11.6111(18) ?, α = 108.201(2)°, β = 108.041(2)°, γ = 92.118(3)°, V = 636.47(17) ?(3) and Z = 1. Variable-temperature and variable-field magnetic susceptibility studies on 1 indicate the presence of weak ferromagnetic interactions between the high-spin iron(ii) centers in the dimer (J = + 1.6 cm(-1)) and the crystalline field anisotropy of the ferrous ion (D = - 2.8, E = - 0.1 cm(-1)). Variable temperature magnetic susceptometry studies on 2 indicate that weak antiferromagnetic coupling exists between the manganese(ii) centers (J = - 1.8 cm(-1)). Compounds 1 and 2 retain their dinuclearity in weakly coordinating or low polarity solvents, while both become mononuclear in solvents such as methanol.  相似文献   

19.
A straightforward approach to heterometallic Mn-Fe cluster-based coordination polymers is presented. By employing a mixed-valent μ(3)-oxo trinuclear manganese(II/III) pivalate cluster, isolated as [Mn(II)Mn(III)(2)O(O(2)CCMe(3))(6)(hmta)(3)]·(solvent) (hmta = hexamethylenetetramine; solvent = n-propanol (1), toluene (2)) in the reaction with a μ(3)-oxo trinuclear iron(III) pivalate cluster compound, [Fe(3)O(O(2)CCMe(3))(6)(H(2)O)(3)]O(2)CCMe(3)·2Me(3)CCO(2)H, three new heterometallic {Mn(II)Fe(III)(2)} cluster-based coordination polymers were obtained: the one-dimensional polymer chain compounds {[MnFe(2)O(O(2)CCMe(3))(6)(hmta)(2)]·0.5MeCN}(n) (3) and {[MnFe(2)O(O(2)CCMe(3))(6)(hmta)(2)]·Me(3)CCO(2)H·(n-hexane)}(n) (4) and the two-dimensional layer compound {[MnFe(2)O(O(2)CCMe(3))(6)(hmta)(1.5)]·(toluene)}(n) (5). Single-crystal X-ray diffraction analysis reveals a μ(3)-oxo trinuclear pivalate cluster building block as the main constituent in all polymer compounds. Different M:hmta ratios in 1-5 are related to the different structural functions of the N-containing ligand. In clusters 1 and 2, three hmta ligands are monodentate, whereas in chains 3 and 4 two hmta ligands act as bridging ligands and one is a monodentate ligand; in 5, all hmta molecules act as bidentate bridges. Magnetic studies indicate dominant antiferromagnetic interactions between the metal centers in both homometallic {Mn(3)}-type clusters 1 and 2 and heterometallic {MnFe(2)}-type coordination polymers 3-5. Modeling of the magnetic susceptibility data to a isotropic model Hamiltonian yields least-squares fits for the following parameters: J(1)(Mn(II)-Mn(III)) = -6.6 cm(-1) and J(2)(Mn(III)-Mn(III)) = -5.4 cm(-1) for 1; J(1) = -5.5 cm(-1) and J(2)(Mn(III)-Mn(III)) = -3.9 cm(-1) for 2; J(1)(Mn(II)-Fe(III)) = -17.1 cm(-1) and J(2)(Fe(III)-Fe(III)) = -43.7 cm(-1) for 3; J(1) = -23.8 cm(-1) and J(2) = -53.4 cm(-1) for 4; J(1) = -13.3 cm(-1) and J(2) = -35.4 cm(-1) for 5. Intercluster coupling plays a significant role in all compounds 1-5.  相似文献   

20.
The synthesis and magnetic properties of the compound [Mn(22)O(6)(OMe)(14)(O(2)CMe)(16)(tmp)(8)(HIm)(2)] 1 are reported. Complex 1 was prepared by treatment of [Mn(3)O(MeCO(2))(6)(HIm)(3)](MeCO(2)) (HIm = imidazole) with 1,1,1-tris(hydroxymethyl)propane (H(3)tmp) in MeOH. Complex 1.2MeOH crystallizes in the orthorhombic space group Pbca. The molecule consists of a metallic core of 2 Mn(IV), 18 Mn(III), and 2 Mn(II) ions linked by a combination of 6 micro(3)-bridging O(2)(-) ions, 14 micro(3)- and micro(2)-bridging MeO(-) ions, 16 micro-MeCO(2)(-) ligands, and 8 tmp(3)(-) ligands, which use their alkoxide arms to bridge in a variety of ways. The metal-oxygen core is best described as a wheel made from [Mn(3)O(4)] partial cubes and [Mn(3)O] triangles. Variable-temperature direct current (dc) magnetic susceptibility data were collected for complex 1 in the 1.8-300 K temperature range in a 1 T applied field. The chi(M)T value steadily decreases from 56 cm(3) K mol(-)(1) at 300 K to 48.3 cm(3) K mol(-)(1) at 30 K and then increases slightly to reach a maximum value of 48.6 cm(3) K mol(-)(1) at 15 K before dropping rapidly to 40.3 cm(3) K mol(-)(1) at 5 K. The ground-state spin of complex 1 was established by magnetization measurements in the 0.1-2.0 T and 1.80-4.00 K ranges. Fitting of the data by a matrix-diagonalization method to a model that assumes only the ground state is populated and incorporating only axial zero-field splitting (DS(z)()(2)), gave a best fit of S = 10, g = 1.96 and D = -0.10 cm(-)(1). The ac magnetization measurements performed on complex 1 in the 1.8-8 K range in a 3.5 G ac field oscillating at 50-1000 Hz showed frequency-dependent ac susceptibility signals below 3 K. Single-crystal hysteresis loop and relaxation measurements indicate loops whose coercivities are strongly temperature and time dependent, increasing with decreasing temperature and increasing field sweep rate, as expected for the superparamagnetic-like behavior of a single-molecule magnet, with a blocking temperature (T(B)) of approximately 1.3 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号