首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
2.
The paper is concerned with coupled (electroelastic, electromagnetoelastic, and magnetoelastic) waves in inhomogeneous media  相似文献   

3.
A nonlinear time-domain simulation model for predicting two-dimensional vortex-induced vibration (VIV) of a flexibly mounted circular cylinder in planar and oscillatory flow is presented. This model is based on the utilization of van der Pol wake oscillators, being unconventional since wake oscillators have typically been applied to steady flow VIV predictions. The time-varying relative flow–cylinder velocities and accelerations are accounted for in deriving the coupled hydrodynamic lift, drag and inertia forces leading to the cylinder cross-flow and in-line oscillations. The system fluid–structure interaction equations explicitly contain the time-dependent and hybrid trigonometric terms. Depending on the Keulegan–Carpenter number (KC) incorporating the flow maximum velocity and excitation frequency, the model calibration is performed, entailing a set of empirical coefficients and expressions as a function of KC and mass ratio. Parametric investigations in cases of varying KC, reduced flow velocity, cylinder-to-flow frequency ratio and mass ratio are carried out, capturing some qualitative features of oscillatory flow VIV and exploring the effects of system parameters on response prediction characteristics. The model dependence of hydrodynamic coefficients on the Reynolds number is studied. Discrepancies and limitations versus advantages of the present model with different feasible solution scenarios are illuminated to inform the implementation of wake oscillators as a computationally efficient prediction model for VIV in oscillatory flows.  相似文献   

4.
Performance of an oscillating subsoiler in breaking a hardpan   总被引:1,自引:0,他引:1  
A single shank tractor mounted oscillating subsoiler was developed to break hardpan, common in sugarcane (Saccharum officinarum) farms especially after harvest when heavy trucks transport the cut canes from the field to the sugar factory. Field experiments were conducted to determine the optimum combination of performance parameters of the subsoiler. Field tests were conducted at frequencies of oscillation of 3.7, 5.67, 7.85, 9.48 and 11.45 Hz; amplitudes of 18, 21, 23.5, 34 and 36.5 mm; and forward speeds of 1.85, 2.20 and 3.42 km h−1 at moisture contents close to the lower plastic limit of the clay soil. A reduction in draft but an increase in total power requirement was found for oscillating compared to non-oscillating subsoiler. The draft and power ratios were significantly affected by the forward speed, frequency and amplitude. Their combined interaction, expressed in terms of the velocity ratio (the ratio of peak tool velocity to forward speed), however, had the strongest influence. At the same velocity ratio, the draft reduction and power increase were less at higher amplitude of oscillation. For the field conditions tested, the optimum operation for least energy expenditure was obtained at an amplitude of 36.5 mm, frequency of 9.48 Hz and speed of 2.20 km h−1 with a draft ratio of 0.33 and power ratio of only 1.24. It could be concluded that the oscillating subsoiler reduces draft for breaking hardpan, reduces soil compaction and promotes the use of lighter tractors by utilizing tractor power-take-off (p.t.o.) power to achieve higher efficiency of power transmission. ©  相似文献   

5.
A numerical method, the so-called multiple monopole (MMoP) method, based on the generalized multipole technique (GMT) is proposed to calculate the band structures of in-plane waves in two-dimensional phononic crystals, which are composed of arbitrarily shaped cylinders embedded in a solid host medium. To find the eigenvalues (eigenfrequencies) of the problem, besides the sources used to expand the wave fields, an extra monopole source is introduced which acts as the external excitation. By varying the excitation frequency, the eigenvalues can be localized as the extreme points of an appropriately chosen function. By sweeping the frequency range of interest and the boundary of the irreducible first Brillouin zone (FBZ), the band structures can be obtained. Some typical numerical examples with different acoustic impedance ratios and with inclusions of various shapes are presented to validate the proposed method.  相似文献   

6.
A fracture mechanics analysis is conducted for a delamination problem of a multilayered thermoelectric material (TEM) that consists of an n-type layer and a p-type layer sandwiched by an insulating layer. A time-varying energy release rate is presented when the n-type layer delaminates from the insulating layer. Effects of the temperature difference across the system and the applied electric current on the energy release rate are identified. The influence of the thickness ratio of the insulating layer to the thermoelectric (TE) layer is also examined. Based on the energy release rate criterion, the critical temperature difference for delamination propagation is obtained. Some useful conclusions are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号