首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
By using the method of quantum statistics, we derive directly the partition functions of bosonic and fermionic field in the black hole space-time with different temperatures on horizon surface. The statistical entropy of the black hole is obtained by an improved brick-wall method. When we choose a proper parameter in our results, we can obtain that the entropy of the black hole is proportional to the area of horizon. In our result, there do not exist any neglected term or divergent logarithmic term as given in the original brick-wall method. We have avoided the difficulty in solving the wave equation of the scalar and Dirac field. A simple and direct way of studying entropy of the black hole is given.  相似文献   

2.
Quantum Statistical Entropy of Black Hole   总被引:1,自引:0,他引:1  
By using the method of quantum statistics, we derive the partition function of bosonic and fermionic field in various coordinates and obtain the integral expression of the entropy of a black hole. Then via the improved brick-wall method, membrane model, we obtain that if we choose proper parameter, the entropy of black hole is proportional to the area of horizon. In our result, the stripped term and the divergent logarithmic term in the original brick-wall method no longer exist. We offer a new simple and direct way of calculating the entropy of black holes in various coordinates.  相似文献   

3.
By making use of the method of quantum statistics,we directly derive the partition function of bosonic and fermionic fields in Reissner-Nordstrom-De Sitter black Hole and obtain the integral expression of black hole‘s entropy and the entropy to which the cosmic horizon surface corresponds.It avoids the difficulty in solving the wave equation of various particles.Then via the improved brick-wall method,i.e.the membrane model,we calculate black hole‘s entropy and cosmic entropy and find out that if we let the integral upper limit and lower limit both tend to the horizon,the entropy of black hole is proportional to the area of horizon and the entropy to which cosmic horizon surface corresponds is proportional to the area of cosmic horizon.In our result,the stripped term and the divergent logarithmic term in the original brick-wall method no longer exist.In the whole process,the physical idea is clear and the calculation is simple.We offer a new simple and direct way for calculating the entropy of different complicated black holes.  相似文献   

4.
By using the method of quantum statistics, we directly derive the partition functions of bosonic and fermionic field in Kaluza—Klein black hole with axial symmetry. Then via the improved brick-wall method, membrane model, we obtain that the entropy of bosonic and fermionic field in black hole is proportional to the area of horizon. In our result, the stripped term and the divergent logarithmic term no longer exist. The problem that the state density is divergent around the horizon doesn't exist either. We also give the influence of the spining degeneracy of particles on the entropy of black hole. We offer a new, simple, and direct way of calculating the entropy of different complicated black holes.  相似文献   

5.
Nernst Theorem and Statistical Entropy of 5-Dimensional Rotating Black Hole   总被引:1,自引:0,他引:1  
In this paper, by using quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of the 5-dimensional rotating black hole. Then via the improved brick-wall method and membrane model, we calculate the entropy of Bose field and Fermi field of the black hole. And it is obtained that the entropy of the black hole is not only related to the area of the outer horizon but also is the function of inner horizon‘s area. In our results, there are not the left out term and the divergent logarithmic term in the original brick-wall method.The doubt that why the entropy of the scalar or Dirac field outside the event horizon is the entropy of the black hole in the original brick-wall method does not exist. The influence of spinning degeneracy of particles on entropy of the black hole is also given. It is shown that the entropy determined by the areas of the inner and outer horizons will approach zero,when the radiation temperature of the black hole approaches absolute zero. It satisfies Nernst theorem. The entropy can be taken as the Planck absolute entropy. We provide a way to study higher dimensional black hole.  相似文献   

6.
The generalized uncertainty relation is introduced to calculate entropy of the black hole. By using quantum statistical method, we directly obtain the partition function of Bose and Fermi field on the background of the plane symmetry black hole. Then we calculate the entropy of Bose and Fermi field on the background of black hole near the horizon of the black hole. In our calculation, we need not introduce cutoff. There are not the left out term and the divergent logarithmic term in the original brick-wall method. And it is obtained that the entropy of the black hole is proportional to the area of the horizon. The inherent contact between the entropy of black hole and the area of horizon is opened out. Further it is shown the entropy of black hole is entropy of quantum state on the surface of horizon. The black hole’s entropy is the intrinsic property of the black hole. The entropy is a quantum effect.  相似文献   

7.
By using the method of quantum statistics, we directly derive the partition function of bosonic and fermionic field in Reissner-Nordström-anti-de Sitter black hole and obtain the integral expression of black hole's entropy. It avoids the difficulty in solving the wave equation of various particles. Then via the improved brick-wall method, membrane model, we calculate the statistical entropy of a film with the thickness of (N – 1) around the outside of horizon. In our result we can choose proper parameter in order to let the thickness of film tend to zero and have it approach the surface of horizon. Consequently, the entropy of black hole is proportional to the area of horizon. The stripped term and the divergent logarithmic term in the original brick-wall method no longer exist. In the whole process, physics idea is clear; calculation is simple. We offer a new simple and direct way of calculating the entropy of different complicated black holes.  相似文献   

8.
In this paper, by using quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of the 5-dimensional rotating black hole. Then via the improved brick-wall method and membrane model, we calculate the entropy of Bose field and Fermi field of the black hole. And it is obtained that the entropy of the black hole is not only related to the area of the outer horizon but also is the function of inner horizon‘s area. In our results, there are not the left out term and the divergent logarithmic term in the original brick-wall method.The doubt that why the entropy of the scalar or Dirac field outside the event horizon is the entropy of the black hole in the original brick-wall method does not exist. The influence of spinning degeneracy of particles on entropy of the black hole is also given. It is shown that the entropy determined by the areas of the inner and outer horizons will approach zero,when the radiation temperature of the black hole approaches absolute zero. It satisfies Nernst theorem. The entropy can be taken as the Planck absolute entropy. We provide a way to study higher dimensional black hole.  相似文献   

9.
We rediscuss the entropy of a charged dilaton-axion black hole for both the asymptotically flat and non-flat cases by using the thin film brick-wall model. This improved method avoids some drawbacks in the original brick-wall method such as the small mass approximation, neglecting the logarithm term, and taking the term L 3 as the contribution of the vacuum surrounding the black hole. The entropy we obtain turns out to be proportional to the horizon area of the black hole, conforming to the Bekenstein-Hawking area-entropy formula for black holes.   相似文献   

10.
平面对称黑洞的统计熵   总被引:1,自引:0,他引:1       下载免费PDF全文
赵仁  张丽春 《物理学报》2002,51(1):21-24
避开求解各种粒子波动方程的困难,直接应用量子统计的方法,计算平面对称黑面背景下玻色场与费米场的配分函数,得到黑面熵的积分表达式.然后应用改进的brickwall方法膜模型,计算黑面视界所对应的统计熵.在所得结果中当所取的积分下限和上限都趋于视界上时,可得到黑面熵与相应黑面视界面积成正比的关系,不存在原brickwall方法中的舍去项与对数发散项.整个计算过程,物理图像清楚,计算简单,为研究黑洞熵提供了一条简捷的新途径 关键词: 量子统计 膜模型 黑面熵  相似文献   

11.
By using the method of quantum statistics, we derive directly the partition functions of bosonic andfermionic fields in the N-dimensional spherically symmetric charged black hole space-time. The statistical entropy ofblack hole is obtained by an improved brick-wall method. When we choose proper parameters in our results, we canobtain that the entropy of black hole is proportional to the area of horizon. In our result, there do not exist neglectedterm and divergent logarithmic term given in the original brick-wall method. We avoid the difficulty in solving the waveequation of scalar and Dirac fields. We offer a simple and direct way of studying entropy of the higher-dimensional black hole.  相似文献   

12.
We discuss the entropy of the Garfinkle-Horowitz-Strominger dilaton black hole by using the thin film brick-wall model, and the entropy obtained is proportional to the horizon area of the black hole confirming the Bekenstein-Hawking's area-entropy formula. Then, by comparing with the original brick-wall method, we find that theresult obtained by the thin film method is more reasonable avoiding some drawbacks, such as little mass approximation, neglecting logarithm term, and taking the term L3 as a contribution of the vacuum surrounding the black hole, and the physical meaning of the entropy is more clearer.  相似文献   

13.
贺锋  赵凡  颜千 《物理学报》2010,59(5):2987-2990
利用砖墙方法和薄层方法计算了Gibbons-Maeda黑洞背景时空中标量场的统计力学熵.用砖墙方法求得的统计力学熵有两项:其中一项与Gibbons-Maeda黑洞视界面积成正比,并且当截断因子满足一定的关系时,熵为其视界面积的四分之一;另一项是对数发散项.利用薄层方法所求得的熵只有与Gibbons-Maeda黑洞视界面积成正比的项,对数发散项被自然消去.  相似文献   

14.
Vaidya-Bonner黑洞的熵   总被引:9,自引:0,他引:9       下载免费PDF全文
宋太平  侯晨霞  史旺林 《物理学报》2002,51(6):1398-1402
从零曲面方程出发,得到了VaidyaBonner黑洞的视界;利用KleinGordon方程和薄膜BrickWall模型,并采用WKB近似方法,求出了VaidyaBonner黑洞的熵,所得的熵正好与该黑洞的视界面积成正比. 关键词: 黑洞 熵 薄膜Brick-Wall模型 视界  相似文献   

15.
The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.  相似文献   

16.
Quantum Statistic Entropy of Three-Dimensional BTZ Black Hole   总被引:1,自引:0,他引:1  
Using the new equation of state density motivated by the generalized uncertainty relation in the quantum gravity, we investigate entropy of a black line on the background of the three-dimensional BTZ. In our calculation, we need not introduce cutoff and can remove the divergent term in the original brick-wall method via the new equation of state density. And it is obtained that the entropy of the black line is proportional to the area of the horizon (perimeter). Further it is shown the entropy of black line is the entropy of quantum state on the surface of horizon (perimeter). The black line entropy is the intrinsic property of the black hole. The entropy is a quantum effect. By using quantum statistical method, we directly obtain the partition function of Bose field and fermi field on the background of the black line. The difficulty to solve wave equation of various particles is avoided. We offer a new simple and direct way for calculating the entropy of various spacetime black holes (black plane, black line and black column). PACS 04.20.Dw; 97.60.Lf  相似文献   

17.
By using the method of quantum statistics, we directly derive the partition function of bosonic and fermionic fields in black cylinder. Then via the improved brick-wall method, membrane model, we obtain that if we choose the proper parameter, the entropy of black cylinder is proportional to the area of the horizon. In our result, the stripped term and the divergent logarithmic term in the original brick-wall method no longer exist. In the whole process, we do not take any approximation. We offer a new simple and direct way of calculating the entropy of different complicated black holes.  相似文献   

18.
刘成周  赵峥 《物理学报》2006,55(4):1607-1615
按纠缠熵方法,计算了Gibbons-Maeda(G-M)dilaton黑洞视界外部与黑洞内量子态纠缠的一薄层内量子场的统计熵,得到了G-M dilaton黑洞的Bekenstein-Hawking熵.用广义不确定原理对量子态密度进行修正,克服了brick-wall模型中视界附近态密度的发散困难,该薄层可以紧贴在事件视界上.对brick-wall外部量子场中与黑洞内自由度有关联的自由度统计熵进行了计算,并把结果与brick-wall内量子场的熵进行比较分析,显示两结果具有与视界面积成正比的一致性,但后者能更 关键词: 纠缠熵 黑洞 广义不确定原理 截断  相似文献   

19.
We calculate the free energy and the entropy of a scalar field in terms of the brick-wall method in the background of the Schwarzschild–de Sitter space–time. We obtain the entropy of a black hole and the cosmic entropy at nonasymptotic flat space. When the cut-off satisfies the proper condition, the entropy of a black hole is proportional to the area of a black hole horizon, and the cosmic entropy is proportional to the cosmic horizon area.  相似文献   

20.
Quantum Thermal Effect of Nonstationary Kerr-Newman Black Hole   总被引:4,自引:0,他引:4  
The Hawking radiation and the entropy of non-stationary Kerr-Newman black hole whose metric changes slowly are calculated via the method of Damour etc. and the thin film brick-wall model. First, we obtain the Hawking radiation temperature and the thermal spectrum formula. Second, we get the entropy density at every point of the horizon surface as well as the total entropy of the black hole, which is just the Bekenstein-Hawking entropy and relies on the notion of the local equilibrium crucially that can be met if the evaporation and the accretion of the black hole is negligible. The results show that the temperature of the event horizon depends on the time and the angle, and the entropy of the non-stationary black hole is also proportional to the horizon area with appropriate cutoff relationship as in the case of stationary black holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号