首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Colloidal semiconductor nanocrystals are promising luminophores for creating a new generation of electroluminescence devices. Research on semiconductor nanocrystal based light-emitting diodes (LEDs) has made remarkable advances in just one decade: the external quantum efficiency has improved by over two orders of magnitude and highly saturated color emission is now the norm. Although the device efficiencies are still more than an order of magnitude lower than those of the purely organic LEDs there are potential advantages associated with nanocrystal-based devices, such as a spectrally pure emission color, which will certainly merit future research. Further developments of nanocrystal-based LEDs will be improving material stability, understanding and controlling chemical and physical phenomena at the interfaces, and optimizing charge injection and charge transport.  相似文献   

3.
4.
Synthesis of monodisperse spherical nanocrystals   总被引:2,自引:0,他引:2  
Much progress has been made over the past ten years on the synthesis of monodisperse spherical nanocrystals. Mechanistic studies have shown that monodisperse nanocrystals are produced when the burst of nucleation that enables separation of the nucleation and growth processes is combined with the subsequent diffusion-controlled growth process through which the crystal size is determined. Several chemical methods have been used to synthesize uniform nanocrystals of metals, metal oxides, and metal chalcogenides. Monodisperse nanocrystals of CdSe, Co, and other materials have been generated in surfactant solution by nucleation induced at high temperature, and subsequent aging and size selection. Monodisperse nanocrystals of many metals and metal oxides, including magnetic ferrites, have been synthesized directly by thermal decomposition of metal-surfactant complexes prepared from the metal precursors and surfactants. Nonhydrolytic sol-gel reactions have been used to synthesize various transition-metal-oxide nanocrystals. Monodisperse gold nanocrystals have been obtained from polydisperse samples by digestive-ripening processes. Uniform-sized nanocrystals of gold, silver, platinum, and palladium have been synthesized by polyol processes in which metal salts are reduced by alcohols in the presence of appropriate surfactants.  相似文献   

5.
All‐inorganic CsPbX3 (X=I, Br, Cl) perovskite quantum dots (PQDs) have been investigated because of their optical properties, such as tunable wavelength, narrow band, and high quantum efficiency. These features have been used in light emitting diode (LED) devices. LED on‐chip fabrication uses mixed green and red quantum dots with silicone gel. However, the ion‐exchange effect widens the narrow emission spectrum. Quantum dots cannot be mixed because of anion exchange. We address this issue with a mesoporous PQD nanocomposite that can prevent ion exchange and increase stability. We mixed green quantum‐dot‐containing mesoporous silica nanocomposites with red PQDs, which can prevent the anion‐exchange effect and increase thermal and photo stability. We applied the new PQD‐based LEDs for backlight displays. We also used PQDs in an on‐chip LED device. Our white LED device for backlight display passed through a color filter with an NTSC value of 113 % and Rec. 2020 of 85 %.  相似文献   

6.
7.
We present a fully continuous chip microreactor‐based multistage platform for the synthesis of quantum dots with heterostructures. The use of custom‐designed chip reactors enables precise control of heating profiles and flow distribution across the microfluidic channels while conducting multistep reactions. The platform can be easily reconfigured by reconnecting the differently designed chip reactors allowing for screening of various reaction parameters during the synthesis of nanocrystals. III–V core/shell quantum dots are chosen as model reaction systems, including InP/ZnS, InP/ZnSe, InP/CdS and InAs/InP, which are prepared in flow using a maximum of six chip reactors in series.  相似文献   

8.
Semiconductor nanocrystals consisting of a quantum dot (QD) core and a quantum well (QW) shell, where the QD and QW are separated by a tunneling barrier, offer a unique opportunity to engineer the photophysical properties of individual nanostructures. Using the thicknesses of the corresponding layers, the excitons of the first and second excited states can be separated spatially, localizing one state to the QD and the other to the QW. Thus the wave function overlap of the two states can be minimized, suppressing non‐radiative thermalization between the two wells, which in turn leads to radiative relaxation from both states. The molecular analogy to such dual emission would be the inhibition of internal conversion, a special case that violates Kasha′s rule. Using nanosecond time‐resolved spectroscopy of QDQW CdSe/ZnS onion‐like nanocrystals, an intermediate regime of exciton separation and suppressed thermalization is identified where the non‐radiative relaxation of the higher‐energy state is slowed, but not completely inhibited. In this intermediate thermalization regime, the temporal evolution of the delayed emission spectra resulting from trapped carriers mimic the dynamics of such states in nanocrystals that consist of only a QD core. In stark contrast, when a higher‐energy metastable state exists in the QW shell due to strongly suppressed interwell thermalization, the spectral dynamics of the long‐lived excitations in the QD and QW, which are spectrally distinct, are amplified and differ from each other as well as from those in the core‐only nanocrystals. This difference in spectral dynamics demonstrates the utility of exploiting well‐defined exciton localization to study the nature and spatial dependence of the intriguing photophysics of colloidal semiconductor nanocrystals, and illustrates the power of nanosecond gated luminescence spectroscopy in illuminating complex relaxation dynamics which are entirely masked in steady‐state or ultrafast spectroscopy.  相似文献   

9.
10.
11.
Summary: Two series of hyperbranched conjugated polymers were synthesized via an A3 + B2 type Wittig reaction. The molecular weights of the polymers were successfully tuned by simply changing the feed ratio of the monomers. Polymers with higher molecular weights presented more efficient photoluminescence, higher thermal stability and higher performance of LEDs.

  相似文献   


12.
Methods for the preparation of II-VI, III-V, and II-V as well as other compound semiconductor nanoparticles using main group single-molecular precursors have been developed. The work involves the design and synthesis of compounds containing all the elements required within the desired nanoparticulate material. Precursors are tailored to give reproducible, clean decomposition at moderate temperatures, leading to high quality, defect free, mono-dispersed nanoparticles. In this article we cover key aspects of precursor and nanoparticle synthesis. One of the more successful and reproducible series of single-source precursors used, and the one on which we have concentrated our research efforts, is the bis(dialkyldithio-/diseleno-carbamato)cadmium(II)/zinc(II) compounds, M(E(2)CNR(2))(2) (M = Zn or Cd, E = S or Se, and R = alkyl) for the preparation of chalcogenide nanoparticulate materials. Preliminary mechanistic studies suggest that the precursor to nanoparticle deposition route is strongly influenced by the alkyl substituent groups present, and may well determine the phase and quality of the final metal chalcogenide nanoparticles produced. Herein we discuss the synthesis of semiconductor nanoparticles using such single-molecular precursors.  相似文献   

13.
Molecular materials with concomitant light‐emissive and semiconducting properties have received increasing attention in recent years. Such dual functional materials ensure the development of multifunctional devices (e.g., organic light‐emitting transistors) and the emergence of new technologies. However, owing to the fact that intermolecular interactions and dense packing have opposite effects on photoluminescence and charge‐carrier mobility, it is still rather challenging to rationally design high‐performance molecular materials that exhibit both semiconducting and light‐emissive properties. In fact, only a limited number of such dual functional materials are available, and most of their performances need to be further improved. In this concept article we discuss the design strategies and perspectives of this challenging area with the introduction of representative examples of such dual functional materials reported in recent years.  相似文献   

14.
采用室温合成法制备出一系列具有高发光效率和多色发光的CsPbX3钙钛矿量子点(PQDs),反应全过程快速简便,且通过调节不同的卤素组成(Cl,Br,I)可以实现CsPbX3 PQD的多色发光。 通过表征证明,CsPbX3 PQDs呈立方晶型,平均粒径约为10 nm,发射光谱覆盖可见光波长范围为410~630 nm,半峰宽14~38 nm,荧光量子产率10%~90%。 最后将CsPbX3 PQDs应用于发光二极管(LED)器件的制备中,在恒定电压下工作时,能保持LED器件的发光颜色、强度和颜色坐标不变。  相似文献   

15.
In recent years, continuous‐flow/microreactor processing for the preparation of colloidal nanocrystals has received considerable attention. The intrinsic advantages of microfluidic reactors have opened new opportunities for the size‐controlled synthesis of nanocrystals either in the laboratory or on a large scale. Herein, an experimentally simple protocol for the size‐tunable continuous‐flow synthesis of rather monodisperse CdSe quantum dots (QDs) is presented. CdSe QDs are manufactured by using cadmium oleate as cadmium source, selenium dioxide as selenium precursor, and 1‐octadecene as solvent. Exploiting selenium dioxide as selenium source and 1‐octadecene as solvent allows execution of the complete process in open air without any requirement for air‐free manipulations using a glove box or Schlenk line. Continuous‐flow processing is performed with a stainless steel coil of 1.0 mm inner diameter pumping the combined precursor solution through the reactor by applying a standard HPLC pump. The effect of different reaction parameters, such as temperature, residence time, and flow rate, on the properties of the resulting CdSe QDs was investigated. A temperature increase from 240 to 260 °C or an extension of the residence time from 2 to 20 min affords larger nanocrystals (range 3–6 nm) whereas the size distribution does not change significantly. Longer reaction times and higher temperatures result in QDs with lower quantum yields (range 11–28 %). The quality of the synthesized CdSe QDs was confirmed by UV/Vis and photoluminescence spectroscopy, small‐angle X‐ray scattering, and high‐resolution transmission electron microscopy. Finally, the potential of this protocol for large‐scale manufacturing was evaluated and by operating the continuous‐flow process for 87 min it was possible to produce 167 mg of CdSe QDs (with a mean diameter of 4 nm) with a quantum yield of 28 %.  相似文献   

16.
17.
18.
We have studied the storage and long-range transport of electrons in a porous assembly of weakly coupled ZnO quantum dots permeated with an aqueous and a propylene carbonate electrolyte solution. The number of electrons per ZnO quantum dot is controlled by the electrochemical potential of the assembly; the charge of the electrons is compensated by ions present in the pores. We show with optical and electrical measurements that the injected electrons occupy the S, P, and D type conduction electron levels of the quantum dots; electron storage in surface states is not important. With this method of three-dimensional charge compensation, up to ten electrons per quantum-dot can be stored if the assembly is permeated with an aqueous electrolyte. The screening of the electron charge is less effective in the case of an assembly permeated with a propylene carbonate electrolyte solution. Long-range electron transport is studied with a transistor set-up. In the case of ZnO assemblies permeated with an aqueous electrolyte, two quantum regimes are observed corresponding to multiple tunnelling between the S orbitals (at a low occupation) and P orbitals (at a higher occupation). In a ZnO quantum-dot assembly permeated with a propylene carbonate electrolyte solution, there is a strong overlap between these two regimes.  相似文献   

19.
Yes, HIMs can! A series of 2,3,6,7‐tetraarylbenzo[1,2‐b:4,5‐b′]dipyrroles (BDPs) were synthesized using zinc‐mediated double cyclization. Organic light‐emitting diodes consisting of BDP:PPB as a hole‐injection layer could be driven at a lower voltage than a PEDOT:PSS‐based device. Correlation of the IP values with the driving voltage shed some light on the mechanism of hole‐injection processes.

  相似文献   


20.
The unique electron-transport and emissive properties of tris(8-quinolinolate) aluminum(III) (Alq(3)) have resulted in extensive use of this material for small molecular organic light-emitting diode (OLED) fabrication. So far, efforts to prepare stable and easy-to-process red/green/blue (RGB)-emitting Alq(3) derivatives have met with only a limited success. In this paper, we describe how the electronic nature of various substituents, projected via an arylethynyl or aryl spacer to the position of the highest HOMO density (C5), may be used for effective emission tuning to obtain blue-, green-, and red-emitting materials. The synthetic strategy consists of four different pathways for the attachment of electron-donating and electron-withdrawing aryl or arylethynyl substituents to the 5-position of the quinolinolate ring. Successful tuning of the emission color covering the whole visible spectrum (lambda=450-800 nm) was achieved. In addition, the photophysical properties of the luminophores were found to correlate with the Hammett constant of the respective substituents, providing a powerful strategy with which to predict the optical properties of new materials. We also demonstrate that the electronic nature of the substituent affects the emission properties of the resulting complex through effective modification of the HOMO levels of the quinolinolate ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号