首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study reports the characterisation of a novel ~12-kDa heterodimeric protein, designated as putrin, from the seeds of Putranjiva roxburghii. The purification of putrin to homogeneity was accomplished using DEAE-sepharose where protein was unbound, CM-sepharose and Cibacron blue 3GA where it was bound and appeared as single peak on a size-exclusion chromatography column. A 15 % sodium dodecyl sulphate polyacrylamide electrophoresis gel, under reducing condition, demonstrated that putrin is made of two polypeptide chains of approximately 4.5 and 7.5 kDa. Circular dichroism studies demonstrated the helical nature and conformational stability of protein at increasing temperatures. Putrin exhibited both RNase and DNase activities and exerted antifungal activity but possessed relatively weak translation–inhibitory activity in cell-free system. The cloning and sequence analysis revealed a 414 bp open reading frame encoding a preproprotein of 137 amino acid residues. The amino acid sequence comparisons and phylogenetic analysis of putrin showed significant homology to 2S seed storage family proteins. The results demonstrated that putrin belongs to 2S albumin family and exhibits a spectrum of biotechnologically exploitable functions.  相似文献   

2.
A novel mannan-specific lectin was isolated from the roots of a traditional Chinese herbal medicine, Ophioglossum pedunculosum through ion-exchange chromatography and gel filtration. With a molecular mass of 19,835.7 Da demonstrated by MALDI-TOF analysis, this novel agglutinin was designated as O. pedunculosum agglutinin (OPA), specifically agglutinating human O erythrocytes and rabbit erythrocytes. The hemagglutination could be strongly inhibited by mannan and thyroglobulin, the activity of which was stable in pH range of 4.0-8.0 and at temperatures below 50 °C. Chemical modification studies indicated that tryptophan and arginine residues were essential for its hemagglutinating activity. Meanwhile, it showed antifungal activities toward Sclerotium rolfsii and Fusarium graminearum. In addition, to amplify cDNA of OPA by 3'/5'-rapid amplification of cDNA ends (RACE), the N-terminal 30 amino acids sequence of OPA was determined, and degenerate primers were designed. The obtained full-length cDNA of OPA contained 885 bp with an open-reading frame of 600 bp encoding a precursor protein of 199 amino acids, while the mature protein had 170 amino acids.  相似文献   

3.
4.
5.
Flammulin, an anti-tumor protein, was purified from the aqueous extract of basidiomes of Flammulina Velutipes to electrophoretic homogeneity and crystallized by microdialysis against a polyethylene glycol- sodium phosphate buffer. The purified product was found to have marked anti-tumor effects and be able to affect the tumor cells directly.  相似文献   

6.
The main objective of the current study was the extraction, purification, and biochemical characterization of a protein protease inhibitor from Conyza dioscoridis. Antimicrobial potential and cytotoxic effects were also examined. The protease inhibitor was extracted in 0.1 M phosphate buffer (pH 6–7). Then, the protease inhibitor, named PDInhibitor, was purified using ammonium sulfate precipitation followed by filtration through a Sephadex G-50 column and had an apparent molecular weight of 25 kDa. The N-terminal sequence of PDInhibitor showed a high level of identity with those of the Kunitz family. PDInhibitor was found to be active at pH values ranging from 5.0 to 11.0, with maximal activity at pH 9.0. It was also fully active at 50 °C and maintained 90% of its stability at over 55 °C. The thermostability of the PDInhibitor was clearly enhanced by CaCl2 and sorbitol, whereas the presence of Ca2+ and Zn2+ ions, Sodium taurodeoxycholate (NaTDC), Sodium dodecyl sulfate (SDS), Dithiothreitol (DTT), and β-ME dramatically improved the inhibitory activity. A remarkable affinity of the protease inhibitor with available important therapeutic proteases (elastase and trypsin) was observed. PDInhibitor also acted as a potent inhibitor of commercial proteases from Aspergillus oryzae and of Proteinase K. The inhibitor displayed potent antimicrobial activity against gram+ and gram- bacteria and against fungal strains. Interestingly, PDInhibitor affected several human cancer cell lines, namely HCT-116, MDA-MB-231, and Lovo. Thus, it can be considered a potentially powerful therapeutic agent.  相似文献   

7.
Sybachin  A. V.  Stepanova  D. A. 《Colloid Journal》2021,83(4):531-531
Colloid Journal - An Erratum to this paper has been published: https://doi.org/10.1134/S1061933X21330024  相似文献   

8.
本文构建的表达载体pGex-2T-SPAP2CT在大肠杆菌中表达出可融性蛋白, 其分子量为46 000, 经纯化后得到产率为10%、 纯度大于90%的GST-SPAP2CT蛋白.  相似文献   

9.
The extraction, characterization and antioxidant activity of polysaccharides from Choerospondias axillaris leaves were investigated in the present study. Two purified polysaccharide fractions, CALP-1 and CALP-2, were isolated from crude Choerospondias axillaris leaf polysaccharides (CALP) by DEAE-52 cellulose chromatography and Sephadex G-100 column chromatography. The characteristics of CAL-1 and CALP-2 were determined by using High-performance Gel Permeation Chromatography (HPGPC), High-Performance Anion-Exchange Chromatography, HPAEC (HPAEC-PAD) and Fourier transform infrared spectroscopy (FTIR). CALP-1 with molecular weight of 11.20 KDa was comprised of Rhamnose, Arabinose, Galactose, Glucose, Xylose, Mannose and galacturonic acid in a molar ratio of 5.16:2.31:5.50:27.18:1.00:0.76:1.07. CAL-2 with molecular weight of 8.03 KDa consisted of Rhamnose, Arabinose, Galactose, Glucose, and galacturonic acid at a ratio of 1.38:3.63:18.84:8.28:1.45. FTIR revealed that CALP-1 and CALP-2 were acidic polysaccharides. The antioxidant activity of crude CALP, CALP-1 and CALP-2 was evaluated in vitro. The fraction CALP-2 was demonstrated to be of polysaccharide nature containing a large percentage of Galactose but no Xylose and Mannose. The antioxidant activity assays showed that CALP-1 and CALP-2 exhibited antioxidant and scavenging activities on hydroxyl and DPPH radicals in vitro. Compared with pure polysaccharide, crude CALP exhibited stronger anti-oxidant activities. These results will provide a better understanding of Choerospondias axillaris leaf polysaccharide and promote the potential applications of Choerospondias axillaris leaf polysaccharide in the pharmacological field and as a natural antioxidant.  相似文献   

10.
A new organic solvent-tolerant strain Bacillus megaterium AU02 which secretes an organic solvent-tolerant protease was isolated from milk industry waste. Statistical methods were employed to achieve optimum protease production of 43.6 U/ml in shake flask cultures. The productivity of the protease was increased to 53 U/ml when cultivated under controlled conditions in a 7-L fermentor. The protease was purified to homogeneity by a three-step process with 24 % yield and specific activity of 5,375 U/mg. The molecular mass of the protease was found to be 59 kDa. The enzyme was active over a wide range of pH (6.0–9.0), with an optimum activity at pH 7.0 and temperature from 40 to 70 °C having an optimum activity at 50 °C. The thermal stability of the enzyme increased significantly in the presence of CaCl2, and it retained 90 % activity at 50 °C for 3 h. The K m and V max values were determined as 0.722 mg/ml and 0.018 U/mg respectively. The metalloprotease exhibited significant stability in the presence of organic solvents with log P values more than 2.5, nonionic detergents and oxidising agent. An attempt was made to test the synthesis of aspartame precursor (Cbz-Asp-Phe-NH2) which was catalysed by AU02 protease in the presence of 50 % DMSO. These properties of AU02 protease make it an ideal choice for enzymatic peptide synthesis in organic media.  相似文献   

11.
A novel halohydrin dehalogenase (HHDH), catalyzing the transformation of 1,3-dichloro-2-propanol (1,3-DCP) to epichlorohydrin (ECH), was purified from Agromyces mediolanus ZJB120203. The molecular mass of the enzyme was estimated to be 28 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). A 735-bp nucleotide fragment was obtained based on the N-terminal and internal amino acid sequences of the purified HHDH. The gene codes a protein sequence with 244 amino acid residues, and the protein sequence shows high similarity to Hhe AAD2 (HHDH from Arthrobacter sp. AD2), defined as Hhe AAm, which is the seventh reported HHDH. Expression of Hhe AAm was carried out in Escherichia coli and purification was performed by nickel-affinity chromatography. The recombinant HheAAm possessed an optimal pH of 8.5 and an optimal temperature of 50 °C and manifested a K m of 4.58 mM and a V max of 3.84 μmol/min/mg. The activity of Hhe AAm was not significantly affected by metal ions such as Zn2+, Ca2+, Cu2+, and EDTA, but was strongly inhibited by Hg2+ and Ag+. In particular, the Hhe AAm exhibits an enantioselectivity for the conversion of prochiral 1,3-DCP to (S)-ECH. The applications of the Hhe AAm as a catalyst for asymmetric synthesis are promising.  相似文献   

12.
S-Adenosylhomocysteine hydrolase (SAHase) encoded by sahase gene is a determinant when catalyzing the reversible conversion of adenosine and homocysteine to S-adenosylhomocysteine in most living organisms. The sahase gene was isolated from the genome of the highly thermostable anaerobic bacteria Thermotoga maritima, and then it was cloned, characterized, overexpressed using Escherichia coli, and partially purified by thermal precipitation. The thermal purification of the recombinant SAHase resulted in changes in the circular dichroism spectra. As a result of this analysis, it was possible to determine the structural changes in the composition of the α-helix and β-sheet content of the recombinant enzyme after purification. Moreover, a predicted secondary structure and 3D structural model was rendered by comparative molecular modeling to further understand the molecular function of this protein including its attractive biotechnological use.  相似文献   

13.
This work assessed the phenolic and flavonoid components and their antioxidant, antifungal, and antibacterial effects in the ethanolic extract of barberry leaf and roots. The antibactericidal activity of root and leaf extracts against pathogenic bacteria was tested using agar diffusion and microdilution broth production for the lowest inhibitory concentration (MIC). Berberis vulgaris root and leaf extracts inhibited Staphylococcus aureus ATCC9973, Escherichia coli HB101, Staphylococcus enteritis, and Escherichia coli Cip812. The disc assay technique was used to assess the bactericidal activity of the extracts versus both pathogenic Gram-positive and Gram-negative strains. Hydro alcoholic extract was more effective against bacterial than fungal strains. The results showed that Berberis vulgaris leaf and roots extract had similar antifungal activities. Berberis vulgaris root extract inhibited the mycelial growth of Penicillium verrucosum, Fusarium proliferatum, Aspergillus ochraceous, Aspergillus niger, and Aspergillus flavus. Berberis vulgaris root extract has excellent antioxidant, antibacterial, and antifungal effects. Berberis vulgaris exhibited antimicrobial activity in vitro, and MIC showed that Berberis vulgaris parts efficiently affected pathogens in vitro. In conclusion, both Berberis vulgaris roots and leaves have considerable antibacterial activity and can be used as a source of antibacterial, antioxidant, and bioactive compounds to benefit human health.  相似文献   

14.
采用滤纸片法和打孔法2种抗菌试验方法,考察2-羟基-1-萘醛缩氨基脲(NAHSEM)对金黄色葡萄球菌、大肠杆菌、枯草杆菌的抗菌活性的结果表明,NAHSEM对3种细菌具有较强的抗菌活性。荧光光谱法研究了NAHSEM与牛血清白蛋白(BSA)的结合作用表明,这种结合行为使BSA的内源荧光猝灭。通过猝灭常数、结合常数和结合位点...  相似文献   

15.
Expression and purification of β-galactosidases derived from Bifidobacterium provide a new resource for efficient lactose hydrolysis and lactose intolerance alleviation. Here, we cloned and expressed two β-galactosidases derived from Bifidobacterium. The optimal pH for BLGLB1 was 5.5, and the optimal temperature was 45 °C, at which the enzyme activity of BLGLB1 was higher than that of commercial enzyme E (300 ± 3.6 U/mg) under its optimal conditions, reaching 2200 ± 15 U/mg. The optimal pH and temperature for BPGLB1 were 6.0 and 45 °C, respectively, and the enzyme activity (0.58 ± 0.03 U/mg) under optimum conditions was significantly lower than that of BLGLB1. The structures of the two β-galactosidase were similar, with all known key sites conserved. When o-nitrophenyl-β-D-galactoside (oNPG) was used as an enzyme reaction substrate, the maximum reaction velocity (Vmax) for BLGLB1 and BPGLB1 was 3700 ± 100 U/mg and 1.1 ± 0.1 U/mg, respectively. The kinetic constant (Km) of BLGLB1 and BPGLB1 was 1.9 ± 0.1 and 1.3 ± 0.3 mmol/L, respectively. The respective catalytic constant (kcat) of BLGLB1 and BPGLB1 was 1700 ± 40 s−1 and 0.5 ± 0.02 s−1, respectively; the respective kcat/Km value of BLGLB1 and BPGLB1 was 870 L/(mmol∙s) and 0.36 L/(mmol∙s), respectively. The Km, kcat and Vmax values of BLGLB1 were superior to those of earlier reported β-galactosidase derived from Bifidobacterium. Overall, BLGLB1 has potential application in the food industry.  相似文献   

16.
Infectious diseases have always been the number one enemy threatening health and well-being. With increasing numbers of infectious diseases, growing resistance of pathogens, and declining roles of antibiotics in the treatment of infectious diseases, it is becoming increasingly difficult to treat new infectious diseases, and there is an urgent need to develop new antibiotics to change the situation. Natural products tend to exhibit many special biological properties. The genus Peganum (Zygophyllaceae) has been used, for a long time, to treat cough, asthma, lumbago, hypertension, diabetes, and Alzheimer’s disease. Over the past two decades, a growing number of studies have shown that components from Peganum harmala Linn and its derivatives can inhibit a variety of microorganisms by inducing the accumulation of ROS in microorganisms, damaging cell membranes, thickening cell walls, disturbing cytoplasm, and interfering with DNA synthesis. In this paper, we provide a review on the antibacterial, antifungal, antiviral, and antiparasitic activities of P. harmala, with a view to contribute to research on utilizing P. harmala for medicinal applicaitons and to provide a reference in the field of antimicrobial and a basis for the development of natural antimicrobial agents for the treatment of infectious diseases.  相似文献   

17.
In the present study, mace-mediated silver nanoparticles (mace-AgNPs) were synthesized, characterized, and evaluated against an array of pathogenic microorganisms. Mace, the arils of Myristica fragrans, are a rich source of several bioactive compounds, including polyphenols and aromatic compounds. During nano synthesis, the bioactive compounds in mace aqueous extracts serve as excellent bio reductants, stabilizers, and capping agents. The UV-VIS spectroscopy of the synthesized NPs showed an intense and broad SPR absorption peak at 456 nm. Dynamic light scattering (DLS) analysis showed the size with a Z average of 50 nm, while transmission electron microscopy (TEM) studies depicted the round shape and small size of the NPs, which ranged between 5–28 nm. The peaks related to important functional groups, such as phenols, alcohols, carbonyl groups, amides, alkanes and alkenes, were obtained on a Fourier-transform infrared spectroscopy (FTIR) spectrum. The peak at 3 keV on the energy dispersive X-ray spectrum (EDX) validated the presence of silver (Ag). Mace-silver nanoparticles exhibited potent antifungal and antibacterial activity against several pathogenic microorganisms. Additionally, the synthesized mace-AgNPs displayed an excellent cytotoxic effect against the human cervical cancer cell line. The mace-AgNPs demonstrated robust antibacterial, antifungal, and cytotoxic activity, indicating that the mace-AgNPs might be used in the agrochemical industry, pharmaceutical industry, and biomedical applications. However, future studies to understand its mode of action are needed.  相似文献   

18.
Strobilurins have become one of the most important classes of agricultural fungicides. To search for new strobilurin derivatives with high activity against resistant pathogens, a series of new β‐methoxyacrylate analogues containing substituted pyrimidine in the side chain with strobilurin pharmacophore were synthesized and their biological activities were tested. The compounds were confirmed and characterized by 1H‐NMR, elemental analysis and mass spectroscopy. The bioassays indicated that most of the compounds 1 exhibited potent antifungal activities against Colletotrichum orbiculare, Botrytis cinerea Pers and Phytophthora capsici Leonian at a concentration of 50 μg mL?1. Notably, compound 1b (R = 2,5‐dimethylphenyl) showed better antifungal activity against all the tested fungi than the commercial strobilurin fungicide azoxystrobin.  相似文献   

19.
Plants are a treasure trove of several important phytochemicals that are endowed with therapeutic and medicinal properties. Ribes rubrum L. (red currants) are seasonal berries that are widely consumed for their nutritional value and are known for their health benefits. Red currants are a rich source of secondary metabolites such as polyphenols, tocopherols, phenolic acids, ascorbic acid, and flavonoids. In this study, sunlight-mediated synthesis of silver nanoparticles (AgNPs) was successfully accomplished within 9 min after adding the silver nitrate solution to the aqueous extract of red currant. The synthesised AgNPs were characterised with UV–Vis, transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared spectrum (FTIR), and energy-dispersive X-ray spectrum (EDX). The efficacy of aqueous extracts of red currants and AgNPs in controlling the growth of some pathogenic fungi and bacteria was also investigated. The UV–visible (UV–Vis) spectrum displayed an absorption peak at 435 nm, which corresponded to the surface plasmon band. The strong silver signal on the EDX spectrum at 3 keV, authenticated the formation of AgNPs. The several peaks on the FTIR spectrum of the aqueous extract of red currant and the nanoparticles indicated the presence of some important functional groups such as amines, carbonyl compounds, and phenols that are vital in facilitating the process of capping and bioreduction, besides conferring stability to nanoparticles. The TEM microphotographs showed that the nanoparticles were well dispersed, roughly spherical, and the size of the nanoparticles ranged from 8 to 59 nm. The red currant silver nanoparticles were highly potent in inhibiting the growth and proliferation of some fungal and bacterial test isolates, especially Alternaria alternata, Colletotrichum musae, and Trichoderma harzianum. Based on the robust antifungal and antibacterial activity demonstrated in this study, red currant nanoparticles can be investigated as potential replacements for synthetic fungicides and antibiotics.  相似文献   

20.
The antifungal drugs currently available and mostly used for the treatment of candidiasis exhibit the phenomena of toxicity and increasing resistance. In this context, plant materials might represent promising sources of antifungal agents. The aim of this study is to evaluate for the first time the chemical content of the volatile fractions (VFs) along with the antifungal and anti-biofilm of Convolvulus althaeoides L. roots. The chemical composition was determined by gas chromatography coupled to a flame ionization detector and mass spectrometry. In total, 73 and 86 chemical compounds were detected in the n-hexane (VF1) and chloroform (VF2) fractions, respectively. Analysis revealed the presence of four main compounds: n-hexadecenoic acid (29.77%), 4-vinyl guaiacol (12.2%), bis(2-ethylhexyl)-adipate (9.69%) and eicosane (3.98%) in the VF extracted by hexane (VF1). n-hexadecenoic acid (34.04%), benzyl alcohol (7.86%) and linoleic acid (7.30%) were the main compounds found in the VF extracted with chloroform (VF2). The antifungal minimum inhibitory concentrations (MICs) of the obtained fractions against Candida albicans, Candida glabrata and Candida tropicalis were determined by the micro-dilution technique and values against Candida spp. ranged from 0.87 to 3.5 mg/mL. The biofilm inhibitory concentrations (IBF) and sustained inhibition (BSI) assays on C. albicans, C. glabrata and C. tropicalis were also investigated. The VFs inhibited biofilm formation up to 0.87 mg/mL for C. albicans, up to 1.75 mg/mL against C. glabrata and up to 0.87 mg/mL against C. tropicalis. The obtained results highlighted the synergistic mechanism of the detected molecules in the prevention of candidosic biofilm formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号