首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
陈新莲  孔凡敏  李康  高晖  岳庆炀 《物理学报》2013,62(1):17805-017805
亚波长尺度光子晶体结构可有效提升发光二极管(LED)的光提取效率(LEE),然而在制造过程中会存在缺陷或无序.利用时域有限差分法对理想方形光子晶体结构进行了优化,在此基础上对三种无序光子晶体结构进行了仿真,研究了光子晶体结构参数的无序变化对GaN基蓝光LED LEE的影响.结果表明,光子晶体空气孔位置和半径的无序变化使优化的80 nm光子晶体LED的LEE下降,而可使非优化的60nm光子晶体LED的LEE增加;当光子晶体空气孔位置和半径的无序变化量从0到士20 nm之间变化时,LEE最大会产生53.8%的浮动;光子晶体刻蚀深度的无序变化对LEE影响较小,一般可以忽略,研究结果为高性能蓝光光子晶体LED的设计制作提供了重要的理论参考.  相似文献   

2.
The AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with p-hBN layer are investigated numerically. In comparison with the conventional AlGaN DUV LEDs, the proposed LED can significantly improve the carrier injection, radiative efficiency, as well as the electroluminescence (EL) intensity under the same applied forward bias. Simultaneously, the light extraction efficiency in the LED using p-hBN instead of p-AlGaN exhibits a more than 250% increase at the applied voltage of 7.5 V due to the smaller loss of reflection and absorption of the emitted light.  相似文献   

3.
To increase the light extraction efficiency of GaN-based light-emitting diode (LED) with nano-spherical hexagonal arrays, the finite-difference time-domain method was used to optimize the structure parameters such as radius and height of GaN, $\text{ SiO}_{2}$ and ZnO spherical crown. The light extraction efficiency (LEE) of the GaN spherical crown hexagonal arrays with a radius of 473 nm and a height of 250 nm over the LED surface exhibited 5.7 times the enhancement compared with that of the planar LED, and better than the LEE of the same type of structures with other parameters.  相似文献   

4.
High conversion efficiency and quantum efficiency is essential for the phosphor in an efficient phosphor-based white light LEDs. Here, based on the coherent harmonic and the random independent emitter model, we demonstrate theoretically that the silicon nanoantenna array can dramatically enhance the output power of emitters in a phosphor layer by investigating the far-field radiation enhancement of an electric dipole assisted by silicon nanopillars in a waveguide structure. Compared with the plasmonic silver nanoantenna array, the silicon nanoantenna array can increase the enhancement factor of light extraction efficiency (LEE) over 50% for the dipole source at the wavelength of 620 nm, thus showing potential applications in white light LEDs. The enhanced LEE is ascribed to the low-loss directional light scattering of silicon nanoantennas and the strong guided mode resonances caused by their array. The calculation results also indicate that the far-field radiation can be tailored significantly by changing the aspect ratio of silicon nanopillars while presenting a good directivity. Our research is expected to give more insights into the design and optimization of the solid-state lighting, gaining and lasing systems by integrating silicon-based nanoantennas.  相似文献   

5.
S.-K. Lee  T.-H. Kim  S.-Y. Lee  K.-C. Choi 《哲学杂志》2013,93(14-15):2105-2115
We report on high-brightness GaN nanowire UV–blue light emitting diodes (LEDs), which are fabricated by coupling of n-GaN nanowires and p-GaN substrates using two assembly methods, random dispersion (RD) and dielectrophoresis assisted assembly deposition (DAAD). These GaN nanowire LEDs have bright UV–blue emission (411–437?nm) from the n-GaN nanowire/p-GaN substrate junction and the light emission is strong enough to be observed with the naked eye even for a single GaN nanowire LED. The results reported here should have significant implications for the fabrication of highly efficient, low-cost UV–blue LEDs with low power consumption, as compared to conventional thin-film based GaN LEDs.  相似文献   

6.
李伟  岳庆炀  孔繁敏  李康 《光子学报》2014,42(4):409-416
为了提高GaN基蓝光LED的光提取效率,本文建立了LED顶面分别铺设ZnO纳米柱和纳米锥结构的两种模型,利用时域有限差分法对两种模型进行仿真并对结果进行了比较.仿真结果表明,ZnO纳米结构的各项几何结构参量(包括排列周期P、高度L、宽度W以及斜率k等),对LED顶端光提取效率影响显著.仿真分别得到了两种结构的最佳模型,通过比较,LED顶面纳米柱和纳米锥结构对光提取效率的提高效果相近,其最佳提取效率分别增强至无任何结构时的2.5倍和2.3倍.同时,通过对各项参量扫描获得的对光提取效率的变化曲线进行了分析,并给出了相应相应的理论解释.这些模型优化和理论分析对实际的高性能GaN基LED的设计制造有着指导意义.  相似文献   

7.
为了研究AlGaN量子阱层和垒层中Al组分不同对AlGaN基深紫外发光二极管(LED)光电性能的影响,本文利用MOCVD生长、光刻和干法刻蚀工艺制备了AlGaN量子阱层和垒层具有不同Al组分的270/290/330nm深紫外LED,通过实验和数值模拟计算方法发现,量子阱层和垒层中具有低Al组分紫外LED的AlGaN材料具有较低的位错密度、较高的光输出功率和外量子效率。通过电流-电压(I-V)曲线拟合出的较大的理想因子(3.5)和能带结构图表明,AlGaN深紫外LED的电流产生是隧穿机制占据主导作用,这是因为高Al组分AlGaN量子阱中强极化场造成了有源层区域较大的能带弯曲和电势降。  相似文献   

8.
The effect of triangular air prism (TAP) arrays with different distance-to-width (d/w) ratios on the enhancement of light extraction efficiency (LEE) of InGaN light-emitting diodes (LEDs) is investigated. The TAP arrays embedded at the sapphire/GaN interface act as light reflectors and refractors, and thereby improve the light output power due to the redirection of light into escape cones on both the front and back sides of the LED. Enhancement in radiometric power as high as 117% and far-field angle as low as 129° are realized with a compact arrangement of TAP arrays compared with that of a conventional LED made without TAP arrays under an injection current of 20 mA.  相似文献   

9.
AlGaN基深紫外LED由于具有高调制带宽和小芯片尺寸,在紫外光通信领域受到越来越多的关注.本研究通过改变生长AlGaN量子垒层的Al源流量,生长了三种具有不同量子垒高度的深紫外LED,研究了量子垒高度对深紫外LED光电特性和调制特性的影响.研究发现,随着量子垒高度的增加,深紫外LED的光功率出现先增加后减小的趋势,量...  相似文献   

10.
We have measured the electroluminescence (EL) and carrier lifetime characteristics in InGaN/Sapphire purple light emitting diode (LED), namely, UV3TZ-405-30 in a temperature range from 350 to 120 K and have compared them with those of a similar LED (UV3TZ-395-15) but with different Indium concentration, measured earlier. While it is found that for the present device the EL intensity decreases drastically with lowering of temperature after reaching a maximum (99%) at 228 K, this is markedly different from the previous device where intensity continues to increase monotonically till lowest temperature. This qualitatively distinct temperature dependence indicates difference in nature of localisation of carriers in the multiple quantum wells for varying Indium content in the two devices. The light–current–temperature data have been analysed in terms of the semiconductor rate equations to determine different optoelectronic properties. Next, estimating the ideality factor from the current–voltage (I–V) measurements, the effective carrier lifetime has been evaluated from the open circuit voltage decay process. Using the above measurements, the temperature dependence of the internal quantum efficiency of the device has been calculated and it is found to attain a maximum value of 99.88% at 228 K. Unlike all previous calculations, a unique feature of the present approach has been to include the effect of temperature dependence of the radiative recombination coefficient (B) in the rate equation analysis. Finally, a comparative study of the temperature dependence of the different optoelectronic properties of both devices is presented with and without this effect.  相似文献   

11.
InGaN-based multiple quantum wells (MQWs) yellow light-emitting diodes (LEDs) were grown on Si substrate by metal organic vapor deposition. Blue MQWs were introduced as strain modulation layers for yellow MQWs. The LED chips emitted 72-mW yellow light with 566-nm dominant wavelength and 9.4 % external quantum efficiency (EQE) at 350 mA under room temperature, and it reached a peak EQE of 22.2 % at 0.7 mA. A comparison sample without strain modulation layers exhibited much weaker performance. The results reveal that long-wavelength emission of InGaN system is reliable if the strain of MQWs has been properly modulated.  相似文献   

12.
MOCVD生长InGaN/GaN MQW紫光LED   总被引:8,自引:7,他引:1  
利用LP-MOCVD系统生长了InGaN/GaN MQW紫光LED外延片,双晶X射线衍射测试获得了2级卫星峰,室温光致发光谱的峰值波长为399.5nm,FWHM为15.5nm,波长均匀性良好。制成的LED管芯,正向电流20mA时,工作电压在4V以下。  相似文献   

13.
Hybrid organic–inorganic light emitting devices combine the color purity and durability of inorganic light emitting diodes (LEDs) with high efficiency, flexibility and low processing cost of organic LEDs (OLEDs). A significant challenge is to incorporate inorganic nanocrystals inside the OLED structure. In the present work, thin films of CdS were successfully incorporated inside standard OLED structure using vacuum thermal evaporation technique. For the characterization of these films, they were deposited on plain glass plates at room temperature and studied using structural (XRD and TEM), morphological (SEM and AFM) and optical (UV and PL) techniques. The films were found to be composed of nanocrystals of CdS in which the size of the crystals increased with the increase in film thickness. The hybrid organic–inorganic LEDs showed improved luminance and efficiency as compared to the organic LED without CdS layers.  相似文献   

14.
Improvement in the light extraction efficiency (LEE) of GaN-based green light emitting diodes (LEDs) with ZnO nanostructures synthesized by a hydrothermal method is reported. Formation of ZnO nanorods, hemispheres, and cones was controlled by varying the pH of the aqueous synthesis solution. The shape of the ZnO nanostructures integrated onto the LEDs shows a strong relationship with the LEE characteristics of GaN-based green LEDs. The electroluminescence (EL) intensity of LEDs covered by ZnO nanostructures increased compared to conventional LEDs. In terms of LEE, LEDs with surface-textured ZnO hemispheres showed the highest EL intensity, which can be attributed to an increase in the effective critical angle, the escape cone, and multiple scattering. Finite difference time domain (FDTD) simulation was conducted to theoretically confirm the experimental results.  相似文献   

15.
Light emitting diodes (LEDs) have numerous advantages as light sources in projectors. LEDs are more compact, exhibit a larger color gamut, have a longer lifetime, and need a lower supply voltage. However, there is still one important disadvantage: the optical power per unit of étendue (luminance) of an LED is significantly low. As a result of the étendue limitations of LEDs, the projected flux on the screen will not be high. Despite this shortcoming, LED’s are still of great interest for low power applications because of their other superior properties. Thus we collect the available light flux optimally and combine multiple high luminance LEDs within the system. In this study we discuss three collection systems designed to collect the LED flux with high optical efficiency while retaining small device size. The best collection efficiency attained with our collection systems is 96%. The fabrication tolerance and cost of our collection systems are also analyzed.  相似文献   

16.
齐赵毅  胡晓龙  王洪 《发光学报》2017,38(3):338-346
利用FDTD方法研究具有表面微纳结构氮化镓基倒装薄膜LED芯片的光萃取效率。通过优化表面结构并研究了器件的光萃取效率随p-Ga N层厚的变化。研究发现,具有表面光子晶体和六棱锥结构的器件的光萃取效率最大值比无表面微结构器件分别提高了56%和97%。尽管两种表面结构都能有效提高器件的光萃取效率,然而采用光子晶体的方案对p-Ga N厚度和腔长要求极为苛刻。采用六棱锥结构则不仅可以获得更高的光萃取效率,并且还将大大降低实验上材料外延生长及器件制备的难度。  相似文献   

17.
We theoretically analyze the improvement in light extraction efficiency (LEE) of GaN-based LEDs with transmission grating. Light propagation and extraction was simulated using the finite-difference time-domain (FDTD) method for conical, cylindrical, and hemispherical grating. The simulations show that the use of transmission grating leads to increase in the LEE of GaN-based LEDs. The enhancement in LEE is attributed to the decrease in the Fresnel reflection and the effective increase in the photon escape cone. The maximum LEE enhancement of 2.3 times was achieved by employing hemispherical grating. The directional emission pattern converged by employing conical grating.  相似文献   

18.
The surface patterning of the indium tin oxide (ITO) transparent current layer has been investigated to improve the light extraction efficiency of GaN-based light-emitting diodes (LEDs). LEDs with periodic micro-hexagon patterned ITO have been fabricated utilizing standard lithography techniques and inductively coupled plasma (ICP) technology. The luminance intensity of the LED chips with patterned ITO following 160 s ICP etching was enhanced by about 50% compared to the LED chips with unpatterned ITO. Detailed processing parameters are provided. scanning electron microscopy (SEM) and atomic force microscopy (AFM) are used to examine the micro-structures. The results indicate that the surface-patterned ITO technique could have potential applications in high-power GaN-based LEDs.  相似文献   

19.
纳米半球微镜阵列结构对GaN基LED光提取效率的影响   总被引:1,自引:0,他引:1  
王晓民  李康  孔凡敏  张振明  高晖 《光学学报》2012,32(12):1223001
为了分析表面纳米半球微镜结构对GaN基发光二极管(LED)光提取效率的影响,利用时域有限差分法(FDTD)分别对GaN、ZnO、SiO2、聚苯乙烯组成的半球微镜结构进行了分析和比较,同时用模式分析方法从理论上对FDTD计算结果进行了进一步验证。研究发现,在亚波长范围,折射率较小的材料不利于导模与表面结构层的耦合,不会对光提取效率的提高产生明显影响。相比之下,折射率较大的材料会使更多的模式耦合到半球微镜阵列层,更有利于光提取效率的提高;当材料选定,纳米半球半径增加时,光提取效率也逐渐增加,优化后半径为600 nm的半球微镜阵列结构GaN基LED,其光提取效率比没有结构的普通平板LED增强5.66倍,在以上波导材料结构中最为优化。在此基础上,通过等效折射率的计算得到半球微镜结构的等效折射率模型,并利用非对称平板模式分析的办法对以上得到的结论进行了分析和验证。这些结果对实际的高性能GaN基LED的设计与优化具有重要意义。  相似文献   

20.
Photonic crystals (PhCs) have attracted much attention during the last decade as a solution to overcome the low extraction efficiency of as‐grown light‐emitting diodes (LEDs). In this review we describe the underlying physics and summarize recent results obtained with PhC LEDs. Here, the main focus is on diffracting PhC. In order to quantify the benefit from the incorporation of PhCs for diffracting light a comparison by simulations between a PhC LED and a standard state‐of‐the‐art LED is carried out. Finally, the impact of the PhC on the LEDs emission characteristics will be discussed with respect to étendue‐limited applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号