首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
葡聚糖免疫磁性毫微粒的制备及作为复合靶向载体研究   总被引:14,自引:0,他引:14  
用共沉淀法制备出具有超顺磁性的葡聚糖磁性毫微粒.研究了制备过程中葡聚糖浓度、铁盐用量、搅拌速度、氨水浓度和Fe~(3+)/Fe~(2+)摩尔比对葡聚糖磁性毫微粒有效粒径的影响.抗人乳腺癌单抗与高碘酸钠氧化的葡聚糖磁性毫微粒反应形成葡聚糖免疫磁性毫微粒,并对它的磁化率、形态和抗体保留活性等性质进行了研究.通过放射免疫实验考察葡聚糖免疫磁性毫微粒体外结合肿瘤抗原的能力,同时研究了放射性标记的葡聚糖免疫磁性毫微粒在动物体内的磁性和抗体导向能力.  相似文献   

2.
壳聚糖亲和磁性毫微粒的制备及其对蛋白质的吸附性能研究   总被引:35,自引:0,他引:35  
以壳聚糖为包裹材料包埋自制的磁流体 ,制备了具有核 壳结构的磁性毫微粒 ,并偶联色素配基CibacronBlue 3GA(偶联量 1 4 .5μmol/mL)得到了一种新型亲和磁性毫微粒 .结果表明 ,所得亲和磁性微球具有较窄的粒径分布、形状规整 .以牛血清白蛋白 (BSA)和溶菌酶 (Lys)为目标蛋白 ,考察了该亲和磁性毫微粒的吸附性能 ,发现其对BSA和Lys的吸附量分别为 4和 2 8mg/g,吸附行为满足Langmuir吸附等温式 ,且对时间依赖性小而对溶液离子强度敏感 .  相似文献   

3.
本文用共沉淀法制备了平均直径为384纳米的α,ω-二羧基聚乙二醇磁性毫微粒,碱性蛋白酶通过吸附交联法被固定于磁性毫微粒,研究了制备研究中的吸附时间,给酶量,戊二醛浓度,pH和离子强度对磁性固定化酶活力及酶固定化率的影响。比较了碱性蛋白酶磁性固定化酶与自由酶的酶学性质,磁性固定化酶的最适温度没有改变,但热稳定性显著使高;磁性固定化酶的最适pH向酸性方向移动了1.0个pH单位。  相似文献   

4.
本文用共沉淀法制备了平均直径为384纳米的α,ω─二羧基聚乙二醇磁性毫微粒.碱性蛋白酶通过吸附交联法被固定于磁性毫微粒.研究了制备过程中的吸附时间、给酶量、戊二醛浓度、pH和离子强度对磁性固定化酶活力及酶固定化率的影响.比较了磁性蛋白酶磁性固定化酶与自由酶的酶学性质,磁性固定化酶的最适温度有改变,但热稳定性显著提高;磁性固定化酶的最适pH向酸性方向移动了1.0个PH单位。  相似文献   

5.
羧甲基葡聚糖磁性纳米微球的制备及表征   总被引:1,自引:0,他引:1  
采用超声预处理技术,在羧甲基葡聚糖-水分散体系中,通过化学共沉淀法制备羧甲基葡聚糖磁性复合微球.采用IR,TEM,AFM,XRD和振动样品磁强计方法对产物进行了表征.实验结果表明:超声预处理方法能明显提高复合微球的分散性.制得的复合微球呈球形,分散均匀,平均粒径为100nm.它们具有超顺磁性,室温下磁性饱和磁化强度为35emu·g^-1.  相似文献   

6.
单一分散氧化铁-葡聚糖纳米粒子的制备及超顺磁性   总被引:5,自引:0,他引:5  
0引言 氧化铁-葡聚糖(Fe3O4-Dextran)复合粒子由于具有良好的生物相容性和优异的靶向性能,被用做药物、细胞、酶的载体广泛应用于生物医学、细胞学、生物工程和工业工程等领域[1~3].目前其制备方法主要有一步法和两步法.一步法中氧化铁是在葡聚糖体系下制备的,葡聚糖在氧化铁成核过程中能隔离和分散磁性粒子,防止磁性粒子的团聚和沉积[5].  相似文献   

7.
链亲和素-磁性微粒的制备及其应用   总被引:2,自引:0,他引:2       下载免费PDF全文
通过物理吸附和共价作用机制, 制备两种链亲和素-磁性微粒, 即链亲和素-金磁微粒和链亲和素-氨基磁粒, 并对其在不同缓冲液中的稳定性进行研究; 采用酶抑制法测定两种链亲和素-磁性微粒对游离生物素的结合能力; 分别以紫外吸收和固相核酸杂交方法, 测定两种链亲和素-磁性微粒对生物素标记寡核苷酸探针的固定化容量及活性, 并与Dynabeads®M-270 Streptavidin进行比较. 结果表明: 通过物理吸附作用制备的链亲和素-金磁微粒, 适用于核酸杂交与检测常用的STE (Tris-NaCl-EDTA) 缓冲系统, 通过共价作用形成的链亲和素-氨基磁粒, 适用于STE和磷酸盐(PBS)缓冲系统; 1 mg链亲和素-金磁微粒和链亲和素-氨基磁粒对游离生物素的最大结合容量分别为4950和5115 pmol; 对生物素标记寡核苷酸探针(24 mer) 的结合容量分别为2839和2978 pmol, 测定结果均是Dynabeads®M-270 Streptavidin的6~7倍; 与FITC-标记互补寡核苷酸的杂交结果表明, 固定于链亲和素-磁性微粒表面的寡核苷酸探针保持了较好的生物学活性.  相似文献   

8.
汪鑫  闫凯  龚莹  刘瑞清  徐祖顺 《高分子学报》2014,(11):1547-1552
利用共沉淀法合成Fe3O4磁性纳米粒子,并使用油酸改性生成了粒径均一的油性纳米粒子.使用3-(甲基丙烯酰氧)丙基三甲氧基硅烷,聚乙二醇甲基丙烯酸酯以及荧光可聚合配合物Eu(AA)3Phen为原材料合成了含有稀土金属Eu的两亲性的聚合物为配体,以油性Fe3O4为核,采用配体交换反应制备水性的磁性荧光微粒.并通过核磁共振波谱仪、傅里叶红外光谱仪、透射电子显微镜、动态光散射粒径测试仪、X射线衍射仪、振动样品磁强计、荧光分光光度计、热重分析仪对该微粒进行形貌、结构、超顺磁性以及荧光性能的测试表征.测试结果表明,两亲性聚合物良好有效地包覆在了磁性纳米粒子表面,制得的含稀土磁性荧光微粒在水相中具有良好的分散性,粒径均一,其平均粒径仅为45 nm,室温下的饱和磁化强度为2.3 A·m2/kg,研究过程中测得微粒中的稀土Eu3+在594 nm和619 nm有明显的特征发射光谱.  相似文献   

9.
新型磁性葡聚糖亲和吸附剂的制备及在尿激酶纯化中的应用   总被引:10,自引:0,他引:10  
 采用反相悬浮包埋技术合成多分散的粒径在 5 0目~ 30 0目的磁性葡聚糖微球 (MDMS)。MDMS经环氧氯丙烷活化后 ,分别键合氨基乙酸、6 氨基己酸和乙二胺作为间隔臂 ,以碳二亚胺为偶联剂 ,分别偶联L 精氨酸甲酯、对氨基苯甲脒和胍基己酸配体 ,制备了 5种磁性亲和吸附剂。研究了分散介质及其粘度和密度、有机相和水相的体积比、表面活性剂的用量、搅拌速度等因素对微球制备的影响。将所制备的磁性亲和吸附剂应用于尿激酶粗品的纯化 ,并讨论了偶联试剂和配体对尿激酶纯化效果的影响。  相似文献   

10.
滴定水解法制备的Fe3O4磁流体,与单体N-异丙基丙烯酰胺(NIPAM)和α-甲基丙烯酸(MAA),在一定的条件下沉降聚合,制备了Fe3O4/P(NIPAM-MAA)复合微粒.对其形态及性能进行研究表明,复合微粒呈现核壳结构的规则球形,溶胀态和收缩态的平均粒径分别为334.7nm和141.5nm.复合颗粒中的Fe3O4颗粒质量分数为1.9%,当外磁场为104Oe时,复合微粒的饱和磁化强度(Ms)为0.6306emu/g.分散在水溶液中的复合微粒在30℃~36℃之间发生了体积相转变,表现出温度敏感性.在低pH溶液中的体积相转变十分显著,随pH逐渐增大,其体积相转变温度(VPTT)显示向高温迁移.  相似文献   

11.
IntroductionFerrofluids[1] consistof ultramicroscopic ferro-and ferrimagnetic particles coated with a monolayeror a bilayer of surfactant molecules,which are col-loidally dispersed in a carrier liquid.Under the in-fluence of an external magnetic field,such ferroflu-ids exhibit certain novel phenomena and severalphysical properties of theirs are modified.For ex-ample,ferrofluids are stable in the gravitationaland magnetic fields and behave not only as solidshaving a large saturation magnetizati…  相似文献   

12.
Summary. The generation of superparamagnetic iron-oxide nanoparticles bearing fluorescent ligands is described. γ-Fe2O3 nanoparticles (radius ∼4 and 8 nm) bearing octylamine or oleic acid as ligands were prepared by hydrothermal synthesis starting from Fe-cupferron and iron pentacarbonyl, respectively. Ligand exchange proceeds with 1,2-diols bearing ω-azido or ω-bromo ligands at elevated temperatures. Subsequent nucleophilic substitution reaction, followed by 1,3-dipolar cycloaddition reactions with 2,4,6-trinitro-1-O-propargyl-benzene yields superparamagnetic iron-oxide nanoparticles with a fluoresecent ligand on their surface.  相似文献   

13.
In this report, we developed a simple and green process of simultaneous formation of doxorubicin–BSA–dextran nanoparticles in aqueous solution and high‐effective encapsulation of doxorubicin. In the presence of BSA–dextran conjugates, which were produced by Maillard reaction, a binding of doxorubicin with BSA can suppress the self‐aggregation of unprotonated doxorubicin. After a heat treatment, the gelation of BSA results in a formation of the nanoparticles and the doxorubicin was fixed inside the nanoparticles. The dextran shell makes the nanoparticles dispersible in solution. The nanoparticles have a spherical morphology and a hydrodynamic radius of about 90 nm. Importantly, the nanoparticles can significantly prolong the life of murine ascites hepatoma H22 tumor‐bearing mice.

  相似文献   


14.
Summary: Applying a dialysis process, new nanoparticles based on well‐defined dextran esters of furan‐2‐carboxylic‐ and pyroglutamic acids were prepared, which can undergo cross‐linking by UV irradiation. The highly functionalized products (total DS > 2) avoid the collapse of nanoparticles due to the prevention of hydrogen bond formation. The major fraction of the dextran ester nanospheres exhibits narrow size distribution down to 250 nm as mean diameter investigated by SEM.

SEM images of dextran furoate pyroglutamate nanospheres.  相似文献   


15.
以Maillard反应制备的牛血清白蛋白-葡聚糖共价接枝物作为载体, 通过调节混合溶液的pH值和温度制备负载阿霉素的白蛋白-葡聚糖纳米粒子. 利用分子量为5×103, 10×103和62×103的葡聚糖制备了多种共价接枝物, 研究了共价接枝物分子量对载药纳米粒子的粒径和稳定性及载药量的影响. 用短链葡聚糖(分子量5×103和10×103)制备的纳米粒子粒径为60 nm左右, 用长链葡聚糖(分子量62×103)制备的纳米粒子粒径约为200 nm; 阿霉素的包埋效率为81%~98%, 包埋量为7.4%~16.9%. 细胞实验结果表明, 共价接枝物具有很好的生物相容性; 与自由阿霉素相比, 纳米粒子可以促进阿霉素进入人口腔上皮癌细胞; 受缓释性质的影响, 纳米粒子在低浓度时的细胞毒性要小于自由阿霉素. 与长链葡聚糖纳米粒子相比, 接枝度高的短链葡聚糖纳米粒子由于具有较小的粒径、 密集的葡聚糖分子刷表面、 一定的自由阿霉素浓度和较快的阿霉素释放速率, 因而更容易进入细胞并具有更好的体外抗肿瘤活性.  相似文献   

16.
具有靶向抗癌功能的O-CMC磁性纳米载体系统的制备   总被引:8,自引:0,他引:8  
首次以O_羧甲基壳聚糖 (O_CMC)为原料 ,制备出具有超顺磁特性的正电性纳米载体 ,并将其与抗癌药物甲氨喋呤 (MTX)结合 ,构建成平均粒径 5 0nm的具有磁靶向抗癌功能的纳米载体系统。该载体在人体血液微循环模型进行的体外靶向定位试验中呈现良好的磁感应性。体外抑瘤试验结果表明 ,该磁性纳米载药体系中MTX保持了较好的抗肿瘤特性。  相似文献   

17.
采用溶胶—凝胶法制备了含Ni2+的SiO2干凝胶,再通过化学还原得到了纳米Ni/SiO2介孔复合体。从样品的透射电子显微镜观测结果可估算出,介孔复合体中Ni粒子的尺寸约为11~12 nm。样品的磁性测量结果表明,与通常的Ni纳米颗粒相比,纳米Ni/SiO2介孔复合体中纳米Ni粒子的粒径在大于理论计算的纳米Ni粒子的临界尺寸时,仍能够保持超顺磁状态。在一定温度范围内,提高还原温度有利于复合体中纳米Ni粒子向超顺磁状态转变。  相似文献   

18.
《Analytical letters》2012,45(6):982-998
Molecular surface-imprinted polymers nanoparticles encapsulating magnetite modified with oleic acid, for recognition of salicylic acid was prepared by three-step miniemulsion polymerization. The important factors including polymerization process, solvents, miniemulsifying approaches, and co-stabilizer have been investigated to obtain magnetic molecular imprinting polymers (MMIPs) nanoparticles (NPs) with high saturation magnetization (Ms), regular morphology, and good monodispersion. The results showed that the amount of magnetite encapsulated in MMIPs NPs was 43.4 wt% and Ms was 33.584 emu/g. Thus, MMIPs NPs could be separated easily within 2 minutes by an external magnetic field. The transmission electron microscope (TEM) showed MMIPs NPs were of regular sphere with core-shell structure, where magnetite NPs were uniformly encapsulated in homogeneous polymer shells. The average diameter of MMIPs NPs was 98 nm with RSD of 6.6%. Good recognition and high loading of target molecule were achieved by MMIPs NPs in batch rebinding tests.  相似文献   

19.
Magnetic nanoparticles with novel core-shell structure were prepared for immunoglobulin (IgG) separation, in which thiophilic property of sulfone groups and protein resistance of poly(ethylene glycol) (PEG) moieties were integrated. The step-wise surface reactions on the nanoparticles were characterized by 1H nuclear magnetic resonance (NMR) and surface zeta potential measurements. With human IgG and bovine serum albumin (BSA) as model proteins, the effects of PEG chain length, conjugation group, solution pH and salt concentration on IgG selectivity were investigated using static adsorption experiments. The experiment results showed that mPEG2000-NH2 modified magnetic nanoparticles had an adsorption capacity of 132.8 mg g?1 and selectivity of 32.5 towards IgG under the condition of pH 7.45 and 0.15 M NaCl. In complex biological fluids, the PEG modified magnetic nanoparticles could separate IgG from fetal calf serum and Omalizumab from cell culture supernatant with purities of 96% and 99%, respectively. Moreover, the binding affinities of the proposed core-shell structure towards IgG from four animal species (human, bovine, rabbit and goat) were quantified by bio-layer interferometer (BLI). The results showed that the selectivity of this structure towards IgG varied from traditional Protein A method, suggesting its potentials in rapid separation and purification of IgG with low affinity towards Protein A.  相似文献   

20.
Two sol-gel fabrication processes were investigated to make silica spheres containing Ag nanoparticles: (1) a modified Stöber method for silica spheres below 1 m size, and (2) a SiO2-film formation method on spheres of 3–;7 m size. The spheres were designed to incorporate silver nanoparticles of high (3) in a spherical optical cavity structure for the resonance effect. For the incorporation, interaction between [Ag(NH3)2]+ ion and Si-OH was important. In the Stöber method, the size of the silica spheres was determined by a charge balance of plus and minus ions on the silica surface. In the film formation method, the capture of Ag complex ion on the silica surface depended on whether the surface was covered with OH groups or not. After doping [Ag(NH3)2]+ into silica particles or SiO2 films on the spheres, these ions w ere reduced by NaBH4 to form silver nanoparticles. From plasma absorption at around 420 nm wavelength and TEM photographs of nanometer-sized silver particles, their formation inside the spherical cavity structures was confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号