首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Photocatalytically reductive dehalogenation using nano-sized semiconductors such as ZnS and CdS nanocrystallites under respective UV ( > 300 nm) and visible light ( > 400 nm) irradiation is emphasized as a novel methodology for detoxification of halogenated organic compounds under mild conditions. Nano-sized ZnS and CdS can supply the compounds with photoexcited electrons of high reduction potentials. This photocatalytic dehalogenation is so selective that it gives no other products than the dehalogenated compounds. Microwave-assisted catalytic dehalogenation of halogenated organic compounds shows distinguished characteristics in rapid and complete detoxification, i.e., the selective heating and energy-saving when compared to conventional heating. Predominance of reductive dehalogenation performed in the above two systems is relieved in comparison with other reductive and oxidative techniques as detoxification methods.  相似文献   

2.
Knowing the mechanism by which dangerous organic chloride pollutants, such as tetra- or trichloroethylene, are reductively cleaved is an important task for the establishment of remediation strategies and for a better comprehension of bacterial dehalorespiration by corrinoid-based dehalogenases. On the basis of electrochemical and thermodynamic data, application of outersphere and dissociative electron transfer theories allows the prediction of the pertinent activation/driving force relationships characterizing the electron transfer mechanism. They are validated by application of the redox catalysis method to the reaction with two typical outersphere electron donors. The kinetic gap is more than 11 and 7 orders of magnitude for the dehalogenase and for cobalamin, respectively, showing that the electron transfer mechanism is not operative. Multistep mechanisms in which the chloroethylene molecule enters the cobalt coordination sphere are preferred.  相似文献   

3.
An enzyme-based biosensor was developed by co-immobilization of purified enzyme haloalkane dehalogenase (EC 3.8.1.5) and a fluorescence pH indicator on the tip of an optical fiber. Haloalkane dehalogenase catalyzes hydrolytic dehalogenation of halogenated aliphatic hydrocarbons, which is accompanied by a pH change influencing the fluorescence of the indicator. The pH sensitivity of several fluorescent dyes was evaluated. The selected indicator 5(6)-carboxyfluorescein was conjugated with bovine serum albumin and its reaction was tested under different immobilization conditions. The biosensor was prepared by cross-linking of the conjugate in tandem with haloalkane dehalogenase using glutaraldehyde vapor. The biosensor, stored for 24 h in 50 mM phosphate buffer (pH 7.5) prior to measurement, was used after 15 min of equilibration, the halogenated compound was added, and the response was monitored for 30 min. Calibration of the biosensor with 1,2-dibromoethane and 3-chloro-2-(chloromethyl)-1-propene showed an excellent linear dependence, with detection limits of 0.133 and 0.014 mM, respectively. This biosensor provides a new tool for continuous in situ monitoring of halogenated environmental pollutants.  相似文献   

4.
Environmental pollutants containing halogenated organic compounds can cause a plethora of health problems. Detection, quantification, and eventual remediation of halogenated pollutants in the environment are important to human well-being. Toward this end, we previously identified a haloacid dehalogenase, L-HADST, from the thermophile Sulfolobus tokodaii. This thermophilic enzyme is extremely stable and catalyzes, stereospecifically, the dehalogenation of l-2-haloacids. In the current study, we covalently linked L-HADST to an N-hydroxysuccinimidyl Sepharose resin to construct a highly specific sensor with long shelf life for the detection of l-2-haloacids. The enzyme-modified resin was packed into disposable columns. Samples containing l-2-haloacids were first incubated in the column, and were then collected to quantify the chloride produced through the breakdown of the substrate. The optimum pH of the immobilized enzyme is around 9.5, similar to that of the soluble protein. Its catalytic activity increased with temperature up to the highest temperature measured (50 °C). The resin could be fully regenerated after multiple reaction cycles and retained 70% of the initial activity after being stored at 4 °C for 6 months. The L-HADST-modified resin could be used to breakdown and quantify l-2-haloacids spiked in the simulated environmental samples, indicating dehalogenases from extremophiles can potentially be employed in the detection and decontamination of l-2-haloacids.  相似文献   

5.
Dehalogenases catalyze the cleavage of the carbon-halogen bond of organohalogen compounds. They have been attracting a great deal of attention partly because of their potential applications in the chemical industry and bioremediation. In this personal account, we describe occurrences, reaction mechanisms, and applications of bacterial hydrolytic dehalogenases and related enzymes, particularly L-2-haloacid dehalogenase, DL-2-haloacid dehalogenase, fluoroacetate dehalogenase, and 2-haloacrylate reductase. L-2-Haloacid dehalogenase is a representative enzyme of the haloacid dehalogenase (HAD) superfamily, which includes the P-type ATPases and other hydrolases. Structural and mechanistic analyses of this enzyme have yielded important insights into the mode of action of the HAD superfamily proteins. Fluoroacetate dehalogenase is unique in that it catalyzes the cleavage of the highly stable C--F bond of a fluorinated aliphatic compound. In the reactions of L-2-haloacid dehalogenase and fluoroacetate dehalogenase, the carboxylate group of Asp performs a nucleophilic attack on the alpha-carbon atom of the substrate, displacing the halogen atom. This mechanism is common to haloalkane dehalogenase and 4-chlorobenzoyl-CoA dehalogenase. DL-2-Haloacid dehalogenase is unique in that a water molecule directly attacks the substrate, displacing the halogen atom. The occurrence of 2-haloacrylate reductase was recently reported, revealing a new pathway for the degradation of unsaturated aliphatic organohalogen compounds.  相似文献   

6.
《Analytical letters》2012,45(7):509-514
Abstract

A simple method for the enantioselective determination of 2-halopropanoic acids and 2-halobutanoic acids with two bacterial 2-halo acid dehalogenases has been developed. L-2-Halo acid dehalogenase acts specifically on L-2-haloalkanoic acids, and DL-2-halo acid dehalogenase acts on both enantiomers of the acids. The dehalogenation was followed by determination of halogen ions released. Linear relationship was established between the absorbance at 460 nm, and the amounts of L-2-haloalkanoic acids (0.025-0.5 μmol) or the racemates (0.05-1.0 μmol). The D-isomers were estimated by subtracting the amounts of L-isomers from those of DL-2-haloalkanoic acids.  相似文献   

7.
A rapid method for the simultaneous quantification of non-volatile and volatile fatty acids in aqueous sample by ion-exclusion chromatography is described. The sample is directly injected into the column and detected by a chemically suppressed conductivity detector, connected in tandem with an UV detector at 210 nm. The method allows detection of fatty acid as low as 1 ppm with a linear dynamic range up to 1000 ppm. At least 13 fatty acids can be determined within 50 min. This technique has been used to monitor the common fermentation products (lactate, acetate, propionate and butyrate) of the reductive dehalogenation of tetrachloroethene by anaerobic bacteria.  相似文献   

8.
New obligately anaerobic bacteria are being discovered at an accelerating rate and it is becoming very evident that the diversity of anoxic biotransformations has been greatly underestimated. Furthermore, among contemporary anaerobes there are many that thrive in extreme environments including, for example, an impressive array of both archaebacterial and eubacterial hyperthermophiles. Free energy for growth and reproduction may be conserved not only via fermentations but also by anoxygenic photophosphorylation and other modes of creating transmembrane proton potential. Thus forms of anaerobic respiration in which various inorganic oxidants (or indeed carbon dioxide) serve as terminal electron acceptors have greatly extended the natural habitats in which such organisms may predominate. Anaerobic bacteria are, however, often found in nature as members of close microbial communities (consortia) that, although sustained by syntrophic and other relations between component species, are liable to alter their composition and character in response to environmental changes, e.g., availability of terminal oxidants. It follows that the biotechnological exploitation of obligately anaerobic bacteria must be informed by knowledge both of their biochemical capacities and of their normal environmental roles. It is against this background that illustrative examples of the activities of anaerobic bacteria are considered under three heads:
  1. Biodegradation/Bioremediation, with special reference to the anaerobic breakdown of aromatic and/or halogenated organic substances;
  2. Biosynthesis/Bioproduction, encompassing normal and modified fermentations; and
  3. Biotransformations, accomplished by whole or semipermeabilized organisms or by enzymes derived therefrom, with particular interest attaching to the production of chiral compounds by a number of procedures, including electromicrobial reduction.
  相似文献   

9.
用INDO方法研究了卤代苯腈负离子自由基内部电子转移和脱卤反应的机理。结果表明,内部电子转移和脱卤是密切关联的同步过程。脱卤反应的速率决定于电子转移的难易,与最低的碳卤反键σ空轨道的能级高度相关。  相似文献   

10.
The mechanism of a dehalogenation reaction that occurs during fast atom bombardment (FAB) mass spectrometry was examined using halogenated nucleosides as model compounds. For aglycone-halogenated nucleosides, an inverse linear relationship exists between the extent of FAB dehalogenation and the calculated electron affinity of an individual nucleoside. The degree of dehalogenation for a given nucleoside also varies inversely with the calculated electron affinity of most FAB matrices. The observed dehalogenation reaction can be completely inhibited when matrices with positive electron affinities, such as 3-nitrobenzyl alcohol and 2-hydroxyethyl disulfide, are used. High-performance liquid chromatographic analysis of the bulk glycerol matrix following exposure to the FAB beam indicates measurable amounts of dehalogenated product, suggesting that this reaction occurs in the condensed phase prior to gas-phase ion formation. A dehalogenation mechanism involving thermal electron capture and subsequent negative charge stabilization is consistent with these observations.  相似文献   

11.
Chlorinated hydrocarbons are widely used because of their chemical and thermal stability as well as their fungicidal, herbicidal, and insecticidal properties. Unfortunately, it is just this stability that makes the compounds persistent in nature; half-lives of more than 15 years are not uncommon. In many countries the use of some chlorinated compounds has been prohibited, even though many such compounds (e.g., DDT) exhibit exactly the desired spectrum of effects. Surprisingly, microbiol systems that can degrade most chlorinated hydrocarbons have been found in nature. Indeed, it is possible, in many cases, to isolate pure cultures of bacteria that can utilize these compounds as the sole source of carbon and energy. Even polychlorinated compounds, such as the wood preservative and herbicide pentachlorophenol, can be utilized as a source of carbon by some bacteria. The study of the biodegradation of halogenated hydrocarbons has led to the discovery of novel catabolic pathways in which unusual and previously undescribed enzymatic activities have been detected. Bacterial enzymes have even been isolated that can replace halogen substituents in aliphatic and aromatic compounds with hydroxyl groups or hydrogen atoms. Improved understanding of the biodegradation of halogenated hydrocarbons, as described in this article, will almost certainly result in new biotechnological applications, especially in the area of waste-water treatment.  相似文献   

12.
查晓松 《化学通报》2020,83(2):172-178
本文制备了Cu/Fe和Pd/Fe两种铁基双金属材料,考察它们对溴仿(CHBr_3)的还原去除效果。结果表明,溴仿的还原去除效果都随双金属材料投加量的增加而增加;溶液中H~+浓度越高,越有利于还原反应的进行;溶解氧的存在会对还原去除反应产生抑制作用。双金属材料与溴仿的还原去除反应包括直接还原和间接还原两种途径。Pd和Cu通过与零价铁组成原电池结构加快了零价铁在水中的腐蚀速度,从而增强了零价铁对溴仿的直接还原去除效果。Pd与Cu相比,具有更高的氢过电位,氢气更容易在Pd的表面生成,而氢气也可以作为还原剂,取代溴仿分子中的溴原子,完成还原脱卤。因此,Pd/Fe双金属材料对溴仿的还原去除效果要好于Cu/Fe双金属材料。  相似文献   

13.
Hydrated electrons are highly aggressive species that can force chemical transformations of otherwise unreactive molecules such as the reductive detoxification of halogenated organic compounds. We present the first example of the sustainable production of hydrated electrons through a homogeneous catalytic cycle driven entirely by green light (532 nm, coinciding with the maximum of the terrestrial solar spectrum). The catalyst is a metal complex serving as a “container” for a radical anion. This active center is generated from a ligand through quenching by a sacrificial electron donor, is shielded by the complex such that it stores the energy of the photon for much longer than a free radical anion could, and is finally ionized by another photon to regenerate the ligand and recover the starting complex quantitatively. The sacrificial donor can be a bioavailable reagent such as ascorbic acid.  相似文献   

14.
Abstract

The anaerobic degradation of PCB in loamy and clayey soils containing indigeneous microflora was studied. The anaerobic conditions were created by an argon atmosphere in the flasks containing soil flooded by a liquid medium with glucose. GC-ECD analysis of soil extracts after 40 day incubation showed, in addition to the concentration changes of the less chlorinated PCB congeners, a significant decrease in the concentration of highly chlorinated congeners in both soils. The results indicate that in both soil types reductive dehalogenation of PCB congeners was encountered.  相似文献   

15.
水溶液中2,4,6-三溴苯酚在银阴极上的选择性脱卤   总被引:2,自引:0,他引:2  
采用循环伏安法比较了玻碳、光亮银和粗糙化银电极对2,4,6-三溴苯酚还原脱卤反应的电催化活性, 初步研究了碱性水溶液中2,4,6-三溴苯酚在粗糙化银电极上的还原脱卤历程; 在此基础上, 利用恒电位电解法进一步探索了2,4,6-三溴苯酚在粗糙化银电极上的电还原脱卤历程. 结果表明, 粗糙化银电极对2,4,6-三溴苯酚的选择性还原脱卤反应具有优良的电催化活性, 且其活性优于光亮银和玻碳电极; 2,4,6-三溴苯酚在粗糙化银电极上的还原反应是个逐步脱卤过程, 推测得出其邻位和对位C—Br键的还原断裂所需的活化能非常接近, 而反应中间产物2,4-二溴苯酚的对位C—Br键的还原断裂所需的活化能比邻位要低; 2,4,6-三溴苯酚能实现完全脱卤生成苯酚, 主要路径为2,4,6-三溴苯酚→2,4-二溴苯酚→2-溴苯酚→苯酚.  相似文献   

16.
We have found chlorine kinetic isotope effects on the dehalogenation catalyzed by haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 to be 1.0045 +/- 0.0004 for 1,2-dichloroethane and 1.0066 +/- 0.0004 for 1-chlorobutane. The latter isotope effect approaches the intrinsic chlorine kinetic isotope effect for the dehalogenation step. The intrinsic isotope effect has been modeled using semiempirical and DFT theory levels using the ONIOM QM/QM scheme. Our results indicate that the dehalogenation step is reversible; the overall irreversibility of the enzyme-catalyzed reaction is brought about by a step following the dehalogenation.  相似文献   

17.
Benzenethiol, as a reductive agent for the dehalogenation of various α-halocarbonyl compounds, is investigated in the K+/CH3CN system. The reaction affords the reduced compounds in high yields under mild reaction conditions, especially α-chlorocarbonyl compounds. Furthermore, the reaction performed under ultrasonic irradiation greatly shortens the reaction time.  相似文献   

18.
氢解还原法进行环境污染控制   总被引:4,自引:0,他引:4  
杨波|余刚 《化学进展》2009,21(1):217-226
化学氢解法具有脱卤、脱氮、脱硫、脱芳构化等作用,目前的研究表明该方法对环境中的许多重要污染物都具有还原去除效果,包括卤代化合物、硝基芳香化合物、有机硫化合物、多环芳烃等有机污染物,以及硝酸盐、硫酸盐、氮氧化物、二氧化硫、重金属等无机污染物。为此,本文综述了氢解还原方法降解各类污染物的研究现状,分别介绍了上述各种污染物氢解还原的脱除机理以及影响因素的作用机制,基于绿色化学的要求分析了氢解还原方法的技术优势,从提高氢解效率和节能的角度提出了今后的研究方向。  相似文献   

19.
Unexpected catalyst for Wittig-type and dehalogenation reactions   总被引:1,自引:0,他引:1  
A novel catalyst 2 for Wittig-type and dehalogenation reactions was developed. In the presence of triphenyl phosphite, a wide variety of aldehydes could react with alpha-bromoacetates to afford alpha,beta-unsaturated esters or ketones in high yields with excellent E-stereoselectivity when 1-2 mol % of compound 2 was used. Compound 2 was also an effective catalyst for reductive dehalogenation of alpha-bromocarbonyl compounds. The mechanisms for the above reactions were also proposed.  相似文献   

20.
低价钒试剂促进的有机反应及其在有机合成中的应用   总被引:3,自引:0,他引:3  
综述了近年来低价钒试剂促进的有机反应及其在有机合成中的应用。重点讨论了低价钒试剂促进下的碳-碳键的形成反应,如卤代烃的还原偶联、醛(酮)的还原偶联、羰基化合物的脱氧烷基化及脱氧偶联反应等。另外,还介绍了催化量的低价钒度剂在促进有机反应方面的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号