首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The dynamics of the adsorption and evolution of fluorinated C60F18 fullerene molecules on the Cu(001) surface are studied by real-time ultra-high vacuum scanning tunneling microscopy. Fluorinated fullerene molecules are shown to decompose with time on the Cu(001) surface transforming to C60 molecules. The decay rate depends on the initial molecular coverage. The rapid decay of fluorinated fullerene molecules is observed when the coverage is no higher than 0.2 single layers. As a result, two-dimensional islands consisting of pure C60 molecules are formed on the Cu(001) surface. 2D islands consisting of fluorinated fullerene molecules are formed when the initial molecular coverage is higher than 0.5 single layers. The molecules inside these islands also tend to decompose with time. It is found experimentally that fluorine atoms are removed completely from the initial C60F18 molecules adsorbed on the Cu(001) surface after 250 h when the initial molecular coverage is 0.6 single layers.  相似文献   

2.
A semi-empirical molecular dynamics model is developed. The central collisions of C60+C60 and He@C60+He@C60 at different incident energies are investigated based on this model. It is found that the dimer structures have been produced at proper incident energies and these fullerene dimers could be formed by a self-assembly of C60 fullerene and He@C60. The He atom has a significant effect at higher incident energy and this embedded He atom can enhance the stability of the dimer structure.  相似文献   

3.
A molecular dynamics simulation of the low-energy interaction of C60 fullerenes and Cu1@C60, Cu6@C60, and Cu13@C60 endofullerenes with a Cu(100) surface was performed. The effects of a copper cluster encapsulated in a fullerene and of a fullerene’s translational motion and rotation energy on its penetration into a surface were investigated. It was shown that the presence of an encapsulated cluster has a positive effect on fullerene penetration into a surface with preservation of the fullerene’s structure. The optimal conditions for fullerene penetration into a copper crystal surface were determined.  相似文献   

4.
The structure transformation occurring in fullerene film under bombardment by 50 keV C60+ cluster ions is reported. The Raman spectra of the irradiated C60 films reveal a new peak rising at 1458 cm−1 with an increase in the ion fluence. This feature of the Raman spectra suggests linear polymerization of solid C60 induced by the cluster ion impacts. The aligned C60 polymeric chains composing about 5–10 fullerene molecules have been distinguished on the film surface after the high-fluence irradiation using atomic force microscopy (AFM). The surface profiling analysis of the irradiated films has revealed pronounced sputtering during the treatment. The obtained results indicate that the C60 polymerization occurs in a deep layer situated more than 40 nm below the film surface. The deep location of the C60 polymeric phase indirectly confirms the dominant role of shock waves in the detected C60 phase transformation.  相似文献   

5.
The low energy deposition of silver cluster cations with 561 (±5) atoms on a cold fullerene covered gold surface has been studied both by scanning tunneling microscopy and molecular dynamics simulation. The special properties of the C60/Au(111) surface result in a noticeable fixation of the clusters without a significant change of the cluster shape. Upon heating to room temperature we observe a flattening or shrinking of the cluster samples due to thermal activation. Similar changes were observed also for mass selected Ag clusters with other sizes. For comparison we also studied Ag islands of similar size, grown by low temperature deposition of Ag atoms and subsequent annealing. A completely different behavior is observed with much broader size distributions and a qualitatively different response to annealing.  相似文献   

6.
A systematic investigation of D3 C32 fullerene and its derivatives C32Xn (X = H and Cl) has been performed using B3LYP/6-31G(d) method based on the density functional theory. The geometry structures, reaction energies, relative stabilities, and electronic properties have been studied. By investigating the possible C32Xn (X = H and Cl) molecules, C32H2 and C32Cl2 behave more thermodynamically accessible with respect to other derivatives. The frontier molecular orbitals and electronic density of states calculations of C32X2 system indicate that H and Cl passivation have less contribution to the electronic structures, but significantly improve the stability of D3 C32 fullerene. Finally, the 13C NMR chemical shifts of C32H2 and C32Cl2 have been simulated to provide helpful information for further experiment identification.  相似文献   

7.
The possible existence of complexes formed by the C60 fullerene or its derivatives with transition metals interacting with the carbon cage via η6−π type bonding is discussed. The derivatives C60 R 6 of the C60 fullerene (R = −, H, F, Cl, Br, CN) are analyzed using the density functional method within the Perdew-Burke-Ernzerhof approximation. In these molecules, the R groups are attached to carbon atoms located in the α positions with respect to the common hexagon of the C60 fullerene. The structure and electron configuration of complexes formed by these molecules with Cr(C6H6), Cr(CO)3, MoC6H6, and Mo(CO)3 particles are modeled. The “dimer” systems C60R6-M-R 6C60 (M = Cr, Mo, R =-, H, F) are investigated in which two fullerene molecules interact via a transition-metal atom. It is found that the introduction of six R groups in the α sites with respect to the common hexagon of C60 favors the formation of complexes of these derivatives of the C60 fullerene with the Cr(C6H6), Cr(CO), Mo(C6H6), and Mo(CO)3 particles in which η6-π type bonds arise between the metal and the atoms of the hexagon fringed with the R groups. It is also demonstrated that analogous complexes with a “bare” C60 fullerene are possible, but they are significantly less stable. The (C6H6) M-R 6C60 R 6-M (C6H6) complexes of particles M(C6H6) (M= Cr, Mo) and derivatives R 6C60 R 6 (R =-, H, F, Cl, Br) are studied. In the R 6C60 R 6 molecule, six R groups are located in the α sites with respect to the common hexagon of the C60 fullerene and six other groups fringe the opposite hexagon. The obtained results can be applied to planning synthesis of new complexes that C60 fullerene derivatives can form with transition metals. Original Russian Text ¢ E.G. Gal’pern, A.R. Sabirov, I.V. Stankevich, 2007, published in Fizika Tverdogo Tela, 2007, Vol. 49, No. 12, pp. 2220–2223.  相似文献   

8.
Reactions of fullerene C60 with atomic fluorine are studied by the unrestricted broken spin symmetry Hartree-Fock (UBS HF) approach implemented in semiempirical codes based on the AMI technique. The calculations are focused on a successive addition of a fluorine atom to the fullerene cage following the indication of the highest chemical susceptibility of the cage atom, which is calculated at each step. The proposed computational synthesis is based on the effectively unpaired-electron concept of the chemical susceptibility of fullerene atoms. The obtained results are analyzed from the standpoints of energy, symmetry, and the composition abundance. A good fitting of the data to experimental findings proves a creative role of the suggested synthetic methodology.  相似文献   

9.
The current work is dedicated to investigation of the interaction between self-assembled polar molecules of fullerene fluoride C60F18 with the chemically active surface Ni(100) under radiation and heat treatments. X-ray photoelectron spectroscopy is used in combination with quantum-chemical simulation. For the first time, the transformation of an as-deposited dielectric continuous 2D thin film to a 3D island-type assembly with molecular ordering within the islands is shown to take place. The degree of coverage of the Ni surface by C60F18 islands (0.6–0.7) and their height (~6 nm) are estimated. Quantum-chemical simulation shows that the chemisorption energy of the C60F18 molecule on the Ni surface equals ~6.6 eV and fluorine atoms are located at a distance of 1.9 Å above the Ni surface. The results of the investigation provide an opportunity to create nanoscale ordered structures with local changes in the work function.  相似文献   

10.
A comparative analysis of the stability factors and electronic structure of two possible crystalline forms of small fullerene C28 and endohedral fullerene Zn@C28 with diamond and lonsdaleite structures is performed using a cluster model. Atoms of elements that, when placed inside C28 cages, have no significant effect on the stability of free small-fullerene molecules are shown to be able to dramatically change the electronic properties and reactivity of the C28 skeleton and to be favorable for forming small-fullerene crystalline modifications, which are covalent crystals. In contrast, if the presence of foreign atoms inside C28 cages stabilizes the isolated nanoparticles, then molecular crystals (such as C60 fullerites) are formed due to weak van der Waals forces.  相似文献   

11.
Quantum-chemical calculations of the geometric structure and vibrational spectra of lanthanide endofullerenes have been carried out. The vibrational frequencies of lanthanide atoms depend substantially on the symmetry of the molecular structure of the endofullerene and on the distance between the metal atom and the carbon cage. The infrared spectra of the endofullerenes M@C60 contain vibrations that are forbidden by symmetry for the empty fullerene C60. A change in the vibrational spectra due to the encapsulation of a metal atom in fullerenes with a C60 cage is considerably more pronounced than that of the higher fullerenes. In the vibrational spectra, there are lines not characteristic of C60, which indicates the presence of M@C60 endofullerenes in a mixture with C60 fullerenes.  相似文献   

12.
Photofragmentation of metal fullerides C60Mx (M=Sm, Pt and Ni) has been studied by excimer laser ablation–TOF mass spectrometry. Metallofullerenes of the type CnM (n<60) have been observed in both the positive and negative ionic modes, with C59M being the most prominent species. It is supposed that the metal atom is incorporated into the network of the fullerene cage to replace one carbon atom of the cage, forming substitutional metallofullerene. The occurrence of the C59M, C58M, C57M clusters in the mass spectra is confirmed by the coincidence of the intensity distribution of the mass peaks with the isotopic abundance pattern calculated from the natural abundance of isotopes of C and M. Odd-numbered high-carbon clusters are observed in our laser ablation study of all the metal fullerides in the negative ion channel. The evolution of the mass spectra of these samples with laser irradiation shots indicates that the transformation process from an externally doped fullerene to the substitutionally doped fullerene involves the loss of metal carbide, MC. The structures of metallofullerenes C2n+1M and C2nM with even and odd total numbers of atoms respectively are discussed. Formation mechanisms with the participation of odd-numbered all-carbon fullerene clusters as intermediates are supposed. Received: 18 June 2001 / Accepted: 28 September 2001 / Published online: 2 May 2002  相似文献   

13.
A new fully carbon nanocomposite material is synthesized by the immersion of carbon nanotubes in a fullerene solution in carbon disulfide. The presence of a dense layer of fullerene molecules on the outer nanotube surface is demonstrated by TEM and XPS. Fullerenes are redistributed on the nanotube surface during a long-term action of an electron beam, which points to the existence of a molecular bond between a nanotube and fullerenes. Theoretical calculations show that the formation of a fullerene shell begins with the attachment of one C60 molecule to a defect on the nanotube surface.  相似文献   

14.
It is shown that the growth of a nanosized fullerite film in the C60 molecules-Nb(100) surface adsorption system depends essentially on the chemical state of adsorbed sulfur. In particular, sulfur as the surface sulfide NbS with a concentration of (9±0.2) × 1014 cm?2 has almost no effect on the adsorption: as on the pure metal, fullerene molecules from the first and, partially, second layers undergo considerable degradation and do not desorb at any temperatures upon the subsequent heating. On the contrary, C60 molecules retain their structure on a valence-saturated NbS2 monolayer with almost the same surface concentration of S atoms, build a fullerite film as crystallites without the formation of an intermediate monolayer (Volmer-Weber mechanism), and completely leave the surface at 800 K, which remains unchanged and uncontaminated.  相似文献   

15.
It is demonstrated in this Letter that the effect of the fullerene shell upon atomic Giant resonance decisively depends upon energy of photoelectrons, by which the resonance decay. According to the earlier prediction, the Giant resonance in Xe is strongly modified in the endohedral Xe@C60 being transformed from a single broad and powerful maximum in Xe into four quite narrow, but with almost the same total oscillator strength. On the contrary, here the 4d Giant resonances in ions Ce3+ (the electronic structure that Ce has, when stuffed into fullerene), in Ce4+, and Eu are considered. In none of them the 4d Giant resonance in endohedrals is affected essentially. This is because the decay of the Giant resonances in these endohedrals proceeds by emission of fast photoelectrons that are almost unaffected by the C60 shell. The results obtained give at least qualitative explanation to the fact that relatively recent observation of 4d Giant resonance in Ce@C82+, where the Giant resonance was observed as a maximum without noticeable structure. The article is published in the original.  相似文献   

16.
Above threshold ionization of two structurally different systems is presented namely a rare gas such as argon and the more complex C60 fullerene. We show that the ionization dynamics is different and is dominated by the presence of high-lying Rydberg states in Ar and low-lying bound states in C60. The study is based on a theoretical (solving the time dependent Schrödinger equation) and/or experimental (using measurements from a photoelectron imaging spectrometer) aspect.Received: 20 December 2002, Published online: 24 April 2003PACS: 33.80.Rv Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states) - 32.80.Fb Photoionization of atoms and ions - 36.40.-c Atomic and molecular clusters - 33.60.-q Photoelectron spectra - 61.48.+c Fullerenes and fullerene-related materials  相似文献   

17.
Based on the ab initio electronic structure calculations the picture of ferromagnetism in polimerized C60 is proposed which seems to explain the whole set of controversial experimental data. We have demonstrated that, in contrast with cubic fullerene, in rhombohedral C60 the segregation of iron atoms is energetically unfavorable which is a strong argument in favor of intrinsic character of carbon ferromagnetism which can be caused by vacancies with unpaired magnetic electrons. It is shown that: (i) energy formation of the vacancies in the rhombohedral phase of C60 is essentially smaller than in the cubic phase, (ii) there is a strong ferromagnetic exchange interactions between carbon cages containing the vacancies, (iii) presence of iron impurities can diminish essentially the formation energy of intrinsic defects, and (iv) the fusion of the magnetic single vacancies into nonmagnetic bivacancies is energetically favorable. The latter can explain a fragility of the ferromagnetism.  相似文献   

18.
The formation mechanism, geometric structures, and electronic properties of a metal-substituted fullerene C58Fe2 have been studied using frontier orbital theory (FOT) and density functional theory (DFT). FOT predicts that two Fe atoms prefer to substitute the two carbons of a [6,6] double bond of C60 yielding a structure denoted as C58Fe2-3, which is different from the two equivalent substitution sites, i.e., the sites on the opposite of C60 cage or in the nearest neighboring sites of a pentagonal ring for C58X2 (X=N and B), and also different from the cross sites of a hexagonal ring for C58Si2. Five possible structures of C58Fe2 are optimized using DFT to see whether FOT works. The DFT calculations support the prediction of FOT. The Mulliken charge of Fe atom in C58Fe2-3 shows that the two Fe atoms of C58Fe2-3 lose 0.70 electron to the carbons of the cage, and the net spin populations of Fe atom indicate that each Fe atom has 1.11 μB magnetic moments, while each of the four nearest neighboring carbons has magnetic moments. Thus, the two Fe atoms have ferromagnetic interaction with each other, and have weak antiferromagnetic interaction with their four nearest neighboring carbons, leaving 2.0 μB magnetic moments for the molecule.  相似文献   

19.
《Current Applied Physics》2015,15(11):1402-1411
In this paper, we have studied the motion of buckminsterfullerene (C60) on a gold surface by analyzing its potential energy and using classical molecular dynamics method. The results can be employed to investigate the motion of C60-based nanocars which have been made in recent years. For this purpose, we have studied the translational and rotational motions of C60 molecule independently. First, we have calculated the potential energy of a C60 molecule on a gold surface in different orientations and positions and employed this data to predict fullerene motion by examining its potential energy. Then we have simulated the motion of C60 at different temperatures using classical molecular dynamics methods. Specifying the regime of the motion at different temperatures is one of main goals of this paper. We have found that the rotational motion of C60 molecule on the gold substrate, was easier than its sliding (translational) motion. Also, the regime of motion of fullerene depended on temperature. The results demonstrate that three different regimes of motion, dependent on temperature, could be observed: rare jumps to adjacent cells, frequent jumps, and continuous motion. Employing the results of this paper not only helps to understand the C60 motion on the gold surface but also provides an appropriate tool for realizing motion of the thermally-driven fullerene-based nanocars.  相似文献   

20.
Carbon-based nanoparticles (NPs) such as fullerenes and nanotubes have been extensively studied for drug delivery in recent years. The permeation process of fullerene and its derivative molecules through membrane is essential to the utilization of fullerene-based drug delivery system, but the mechanism and the dynamics of permeation through cell membrane are still unclear. In this study, coarse-grained molecular dynamics simulations were performed to investigate the permeation process of functionalized fullerene molecules (ca. 0.72 nm) through the membrane. Our results show that single functionalized fullerene molecule in such nanoscale could permeate the lipid membrane in micro-second time scale. Pristine C60 molecules prefer to aggregate into several small clusters while C60OH15 molecules could aggregate into one big cluster to permeate through the lipid membrane. After permeation of C60 or its derivatives into membrane, all C60 and C60OH15 molecules disaggregated and monodispersed in the lipid membrane.
Graphical abstract ?
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号