首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the continuum mechanical model of solid-solid phase transitions of Abeyaratne and Knowles, this paper examines the large time dynamical behavior of a phase boundary. The problem studied concerns a finite elastic bar initially in an equilibrium state that involves two material phases separated by a phase boundary at a given location. Interaction between the moving phase boundary and the elastic waves generated by an impact at the end of the bar and subsequent reflections is studied in detail by using a finite difference scheme. The numerical results show that the phase boundary in a finite bar returns to an equilibrium state after a disturbance of finite duration, whether the two-phase material is trilinear or not.  相似文献   

2.
Using the continuum mechanical model of solid-solid phase transitions of Abeyaratne and Knowles, this paper examines the large time dynamical behavior of a phase boundary. The problem studied concerns a semi-infinite elastic bar initially in an equilibrium state that involves two material phases separated by a phase boundary at a given location. Interaction between the phase boundary and the elastic waves generated by an impact at the end of the bar and subsequent reflections is studied in detail, and an exact solution of the dynamical problem, which is governed by a nonlinear resursive formula, is obtained. It is shown that the phase boundary reaches a new equilibrium state for large time. Numerical calculations based on the recursive formula are carried out to illustrate analytical results.Address after August 15, 1995: Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA24061, USA.  相似文献   

3.
The conception of buckling relative initial imperfection is presented in this paper. According to Boulli-Euler beam equation, the dynamic buckling mode of an elastic bar under the homogeneous boundary conditions can be derived by applying the preferred mode analytical method. As an example, the dynamic buckling mode of an elastic bar clamped at both ends is discussed.  相似文献   

4.
5.
对分离式霍普金森压杆(split Hopkinson pressure bar, SHPB) 实验中试件的黏弹性波传播的控制方程组进行Laplace 变换,并结合恰当的初始-边界条件求解,得到变换域的应力、速度、应变等变量的像函数的精确表达式. 采用该方法处理SHPB 实验中涉及黏弹性试件内部应力非均匀性问题,并给出数值反变换解. 作为特例,对于弹性试件分别采用级数展开法和留数定理进行反Laplace 变换,从而给出弹性夹层介质中应力波传播问题的解析解.  相似文献   

6.
弹性杆与结构接触冲击的冲击力计算研究   总被引:2,自引:0,他引:2  
本文提出了一种将杆与结构的接触冲击问题简化为集中力与集中阻尼的常规结构动力学问题的计算模型。对于大型结构,可采用一种特殊的人工边界,只需对人工边界域内的结构用有限元法进行计算。这种人工边界是齐次的,可根据冲击影响区的大小人为地确定  相似文献   

7.
The longitudinal wave propagating in an elastic rod with a variable cross-section owns wide engineering background, in which the longitudinal wave dissipation determines some important performances of the slender structure. To reproduce the longitudinal wave dissipation effects on an elastic rod with a variable cross-section, a structure-preserving approach is developed based on the dynamic symmetry breaking theory. For the dynamic model controlling the longitudinal wave propagating in the elast...  相似文献   

8.
对分离式霍普金森压杆(split Hopkinson pressure bar, SHPB) 实验中试件的黏弹性波传播的控制方程组进行Laplace 变换,并结合恰当的初始-边界条件求解,得到变换域的应力、速度、应变等变量的像函数的精确表达式. 采用该方法处理SHPB 实验中涉及黏弹性试件内部应力非均匀性问题,并给出数值反变换解. 作为特例,对于弹性试件分别采用级数展开法和留数定理进行反Laplace 变换,从而给出弹性夹层介质中应力波传播问题的解析解.   相似文献   

9.
We study the propagation of phase transformation fronts induced by the longitudinal impact of two shape memory alloy bars modeled by a general form of a rate-type approach to non-monotone elasticity. We illustrate that such a rate-type law should be seen like a kinetic law for phase transformation. This investigation continues in a comparative way the analysis of the dynamic theory of elastic bar considered in Part I in relation with a viscosity criterion. We focus here on mathematical, thermodynamical and experimental aspects related with the wave structure which accompanies both the forward and reverse transformation. We analyze the propagation of disturbances in a pure phase near and far from their sources, that is the instantaneous waves and the delayed waves as well as the traveling wave solutions and the accompanying dissipation. In the numerical experiments one focuses on the influence of the impact velocity on the way the phase boundary propagates and on the results which can indicate indirectly the existence of a phase transformation like the time of separation, the velocity–time profile at the rear end of the target and the stress history at the impact face.  相似文献   

10.
非局部弹性直杆振动特征及Eringen常数的一个上限   总被引:5,自引:0,他引:5  
郑长良 《力学学报》2005,37(6):796-798
应用非局部连续介质理论推导了弹性直杆的振动方程,并采用分离变量法 进行求解,得到了振动方程的本征方程、模态函数及通解. 结果表明:非局部连续介质弹性 直杆的自振频率因非局部效应而降低,降低的幅度不仅与材料内禀长度相关,还与振动频率 的阶次相关;而且频率大小存在极限值,显示了与晶格点阵相同特性. 通过与Brillouin格 波结果比较,给出了Eringen非局部理论中材料常数的一个上限.  相似文献   

11.
This work is a follow-up on the study [32] of interface dynamics and hysteresis in materials undergoing solid-solid phase transitions. We consider the dynamics of a viscoelastic bar with a nonmonotone stress-strain relation and viscous stress linearly proportional to the strain rate. The bar is placed on an elastic foundation with stiffness β mimicking the interaction of phases in higher dimensions. Time-dependent displacement-controlled loading of the bar results in a tilted and serrated hysteresis loop, in qualitative agreement with some experimental observations in shape-memory alloys. The model exhibits three phase transition processes: phase nucleation, interface slip and phase annihilation. Between these dynamic processes the system gets stuck in local minimizers of the potential energy. As β increases from zero, a slip-dominated solution behavior transforms to the one where slip and annihilation events are preceded by a step-by-step nucleation process. We show that this transition is caused by an interplay between the slip-favoring inertia term and the nucleation-favoring elastic foundation terms. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
A Green's function approach is used to formulate and obtain the stress field, under torsional loads in a radially finite solid cylinder with radially variable elastic modulus. With this approach a certain dual static-geometric analogy in the solution is readily proved and applied to generate the solution with stress boundary conditions from that with displacement boundary conditions and vice-versa.The problem is solved using both boundary conditions and for an exponentially varying shear modulus. In particular, under displacement boundary conditions, the stress field in the solid with a generalised Reissner-Sagoci boundary condition is easily deduced. With stress boundary conditions, the criteria for crack propagation in such elastic models are also obtained using the Griffith-Irwin condition of rupture.  相似文献   

13.
Taylor impact is a widely used strategy in which a flat-nosed projectile is fired onto a rigid anvil directly to determine the dynamic strength of rod specimens. Nowadays, the rigid anvil is often replaced by an output target bar to ensure the accuracy of measurement via recording strain signals in the output bar. For testing the dynamic strength of low-density materials, a low-impedance target bar, which exhibits viscoelastic characteristics is often employed. In this paper, an extended Taylor model is proposed to improve the idealization of treating the target bar as perfectly rigid material in the classic Taylor model, and the viscoelastic effect of the target bar is incorporated. The viscoelastic target bar is depicted by two elastic springs and one dashpot. Based on the plastic shock wave theory in the flat-nosed projectile associated with the viscoelastic wave analysis in the target bar, the viscoelastic effect of the target bar on the impact response of the flat-nosed projectile is investigated. The finite element simulation is also carried out to verify the theoretical model, and good agreement is found. The present theoretical model is also called the Taylor-cylinder Hopkinson impact, which provides a more accurate way to identify the dynamic material parameters. The dynamic responses of the present model are further compared with previous elastic and rigid target bar models. It is found that the viscoelastic effect of the target bar should be taken into consideration in the Taylor-cylinder Hopkinson impact test for low-impedance materials.  相似文献   

14.
针对非饱和地基土中埋置隧道的三维动力响应计算问题, 提出了波函数法.采用无限长的Flügge薄壁圆柱壳模拟圆形隧道衬砌,采用流、固、气组成的三相介质模拟非饱和地基土体.分别采用分离变量法以及Helmholtz矢量分解定理求解薄壁圆柱壳的振动控制方程与非饱和土的波动方程.根据隧-土交界面与地表面处的应力、位移以及孔隙流体压力等边界条件,利用平面波与柱面波的转换性质,实现了隧道内作用单位简谐载荷时隧道衬砌与土体系统动力响应的耦合求解.通过与既有单相弹性介质2.5维有限元-边界元法、两相饱和多孔介质2.5维有限元-边界元法以及三相非饱和介质Pip in Pip半解析法的计算结果进行对比, 验证了本文计算方法的可靠性. 最后,基于该方法, 通过算例分析了不同饱和度下非饱和土-隧道系统的动力响应特征.结果表明, 饱和度对土体动位移与超孔隙水压力的幅值响应有较大影响.该方法的非饱和地基土参数退化后,也可用来计算和分析饱和地基土或单相弹性地基土与隧道系统的动力响应.   相似文献   

15.
The paper discusses the necessary conditions for attaining a design yielding a spring-rate function which is variable. The dynamic response is expressed in terms of velocity and displacement by means of a phase plot (integral curve). A method is presented which allows the generation of a ramp function of multiple shaft splines fitting into a serrated hub to yield the required spring-rate function of the torsion bar. It is shown that the engagement length of splines results in a change of the effective length of the elastic torsion spring. The ramp function can be generated directly from a known spring-rate function. In particular, the constant-frequency variable-mass system is considered.  相似文献   

16.
The fracture toughness of elastic-brittle 2D lattices is determined by the finite element method for three isotropic periodic topologies: the regular hexagonal honeycomb, the Kagome lattice and the regular triangular honeycomb. The dependence of mode I and mode II fracture toughness upon relative density is determined for each lattice, and the fracture envelope is obtained in combined mode I-mode II stress intensity factor space. Analytical estimates are also made for the dependence of mode I and mode II toughness upon relative density. The high nodal connectivity of the triangular grid ensures that it deforms predominantly by stretching of the constituent bars, while the hexagonal honeycomb deforms by bar bending. The Kagome microstructure deforms by bar stretching remote from the crack tip, and by a combination of bar bending and bar stretching within a characteristic elastic deformation zone near the crack tip. This elastic zone reduces the stress concentration at the crack tip in the Kagome lattice and leads to an elevated macroscopic toughness.Predictions are given for the tensile and shear strengths of a centre-cracked panel with microstructure given explicitly by each of the three topologies. The hexagonal and triangular honeycombs are flaw-sensitive, with a strength adequately predicted by linear elastic fracture mechanics (LEFM) for cracks spanning more than a few cells. In contrast, the Kagome microstructure is damage tolerant, and for cracks shorter than a transition length its tensile strength and shear strength are independent of crack length but are somewhat below the unnotched strength. At crack lengths exceeding the transition value, the strength decreases with increasing crack length in accordance with the LEFM estimate. This transition crack length scales with the parameter of bar length divided by relative density of the Kagome grid, and can be an order of magnitude greater than the cell size at low relative densities. Finally, the presence of a boundary layer is noted at the free edge of a crack-free Kagome grid loaded in tension and in shear. Deformation within this boundary layer is by a combination of bar bending and stretching whereas remote from the free edge the Kagome grid deforms by bar stretching (with a negligible contribution from bar bending). The edge boundary layer degrades both the macroscopic stiffness and strength of the Kagome plate. No such boundary layer is evident for the hexagonal and triangular honeycombs.  相似文献   

17.
In this paper the dynamic analysis of 3-D beam elements restrained at their edges by the most general linear torsional, transverse or longitudinal boundary conditions and subjected in arbitrarily distributed dynamic twisting, bending, transverse or longitudinal loading is presented. For the solution of the problem at hand, a boundary element method is developed for the construction of the 14 × 14 stiffness matrix and the corresponding nodal load vector of a member of an arbitrarily shaped simply or multiply connected cross section, taking into account both warping and shear deformation effects, which together with the respective mass and damping matrices lead to the formulation of the equation of motion. To account for shear deformations, the concept of shear deformation coefficients is used, defining these factors using a strain energy approach. Eight boundary value problems with respect to the variable along the bar angle of twist, to the primary warping function, to a fictitious function, to the beam transverse and longitudinal displacements and to two stress functions are formulated and solved employing a pure BEM approach that is only boundary discretization is used. Both free and forced transverse, longitudinal or torsional vibrations are considered, taking also into account effects of transverse, longitudinal, rotatory, torsional and warping inertia and damping resistance. Numerical examples are presented to illustrate the method and demonstrate its efficiency and accuracy. The influence of the warping effect especially in members of open form cross section is analyzed through examples demonstrating the importance of the inclusion of the warping degrees of freedom in the dynamic analysis of a space frame. Moreover, the discrepancy in the dynamic analysis of a member of a spatial structure arising from the ignorance of the shear deformation effect necessitates the inclusion of this additional effect, especially in thick walled cross section members.  相似文献   

18.
The scope of the present article, motivated by the case of the composite wooden propeller of an airplane, is to deal tentatively with the longitudinal free vibrationproblem of an elastic straight bar with a more general mathematical treatment.In this analysis, we have assigned to the modulus of elasticity, the bar cross section as well as the mass per unit length of the bar an exponential function variation, and then found a general solution, wherein three parameters were considered as the main factors to affect the longitudinal free vibration of the inhomogeneous elastic straight bar with a variable cross section.  相似文献   

19.
The coupled elastohydrodynamic problem based on the dynamic equations for a viscous incompressible fluid and for two closed finite-length cylindrical elastic shells, inner and outer, described using the Kirchhoff-Love hypotheses is formulated and solved with the corresponding boundary conditions for harmonic variation of the pressure at the inlet and outlet of an elastic annular pipe. From the solution of this problem the flow parameters and the elastic shell displacements are found. The amplitude and phase frequency characteristics and resonant frequencies of the shells are found. The cases of shells simply supported and with fixed ends are considered. The effect of the support mode and the fluid characteristics on the resonant frequencies and the amplitude frequency characteristics of the shells is investigated.  相似文献   

20.
利用MTS 815电液伺服岩石实验系统进行上限应力为80%、85%、90%、95%单轴抗压强度的大理岩单轴压缩循环加卸载实验,每种上限应力条件分别设置20、40、60、80次循环。再利用分离式Hopkinson压杆对损伤岩样进行动力学实验。分析了循环加卸载上限应力及循环次数对大理岩塑性应变的影响,揭示了大理岩动态力学参数和破碎吸收能随损伤变量的演化规律。实验结果表明:塑性应变与循环次数呈正相关,且上限应力越大,塑性应变趋于稳定所需的循环次数也会增大;动态单轴抗压强度、动态弹性模量随损伤变量增加呈指数衰减;破碎吸能占比以损伤变量D=0.343为临界点分为两个阶段,D<0.343时,破碎吸能占比稳定在10%左右,数值约为13 J,当D>0.343时破碎吸能占比随损伤变量增加不断增大。研究结果可为岩体工程的设计、施工及支护参数的选取提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号