首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new class of thermoset polymers was synthesized based on agrochemical renewable cardanol—a by-product of cashew nut industry. A solventless synthesis of bisbenzoxazine monomers based on bisphenol-A (b) and aniline (abbreviated as Bzb-A) and cardanol (c) with diamines namely bis-(4-(4-aminophenoxy)phenyl)ether (HP), bis-(3-(4-aminophenoxy)phenyl)ether (HM), 4,4′-diaminodiphenylsulphone (DDS) and 2,2-bis(4-(4-aminophenoxy)phenyl)propane (BA) was carried out. The benzoxazine monomers (Bzc-HP, Bzc-HM, Bzc-DDS and Bzc-BA) were characterized by 1H-NMR and FTIR spectroscopy. The curing exotherm depended on the structure of the monomers. The onset curing temperature (T o) was lowest for Bzb-A (460 K) and highest in Bzc-HM (518 K). The decomposition temperature for 5% mass loss (T 5%) of resins followed the order PBzb-A < PBzc-DDS < PBzc-BA < PBzc-HM ≈ PBzc-HP. The materials showed their potential as adhesives. Lap shear strength on steel plates followed the trend PBzc-DDS < PBzc-HM < PBzc-BA < PBzc-HP.  相似文献   

2.
A bis benzoxazine monomer with allyl groups viz: 2,2′-bis (8-allyl-3-phenyl-3,4-dihydro-2H-1,3-benzoxazinyl) propane (Bz-allyl) was synthesized via a solventless method from 2,2′diallyl bisphenol-A, paraformaldehyde and aniline. The chemical structure of Bz-allyl was confirmed by FTIR, 1H NMR and 13C NMR analyses. The monomer manifested a two-stage thermal polymerisation pattern. The first stage was attributed to the polymerisation of the allyl groups and the second to the ring - opening polymerisation of benzoxazine moiety. The polymerisation profile was investigated with DSC, FT-IR, TGA and pyrolysis-GC techniques. A polymerisation mechanism involving the electrophilic addition of the propagating iminium cation on the aniline ring in lieu of the activated sites of bisphenol-A, (which are blocked by allyl and alkyl substituents) was proposed. Additional cross-linking was provided by thermal addition polymerization of allyl groups. As a result of altered cross-linking via the aniline moiety and the additional cross-linking via allyl groups, the cured polymer exhibited a Tg of ca. 300 °C and high crosslink density. The thermal stability of this polymer was also substantially higher vis-à-vis that of the bisphenol-A based polybenzoxazine. The work focuses on the manipulation of benzoxazine monomer structure to alter the ring-opening polymerisation mechanism and cross-linking to derive polybenzoxazine with improved properties.  相似文献   

3.
New type of Polybenzoxazine–silica (PBZ–SiO2) hybrid nanocomposites was prepared through in situ sol–gel method. Benzoxazine was synthesized using bisphenol-A, trans-4-aminocyclohexanol hydrochloride and formaldehyde solution through Mannich condensation reaction and was characterized by FT-IR, 1HNMR and 13CNMR spectroscopy. The methodology adopted in the present study involves to formation of hydrogen bond interaction between the benzoxazine monomer and the silica matrix, followed by the ring opening polymerization of benzoxazine monomer through thermal curing to obtain a red brown transparent PBZ–SiO2 hybrid. The formation of hybrid nanocomposites was confirmed by FT-IR. Thermal and morphological properties of the hybrid materials were investigated by the differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), scanning electron microscopy (SEM). The PBZ–SiO2 hybrids show improved thermal properties and glass transition (Tg) temperature. The nitrogen porosimetry study was carried out to confirm the nanometer level integration of polybenzoxazine in the PBZ–SiO2 hybrid nanocomposites.  相似文献   

4.
This article describes synthesis, characterization and properties of blends of benzoxazine (Bz) monomers, i.e., m-alkylphenyl-3,4-dihydro-2H-benzoxazine (Bz-C), 6,6′-(propane-2,2-diyl)bis(3-phenyl-3,4-dihydro-2H-benzoxazine (Bz-A) and 3-phenyl-3,4-dihydro-2H-benzoxazine-p-carboxylic acid (Bz-pA). Binary blends of Bz-C with Bz-pA, and Bz-A with Bz-pA were prepared by first synthesizing Bz-C or Bz-A followed by the addition of all the ingredients of Bz-pA. In a similar manner, ternary blends of Bz-C, Bz-A and Bz-pA were prepared by first synthesizing Bz-C and subsequent addition of all the ingredients of Bz-A and Bz-pA in one pot. The Bz monomer blends were characterized by 1H-NMR, FTIR spectroscopy, and differential scanning calorimetry. The temperature of onset of curing (T o), due to ring-opening polymerization of Bz was found to decrease significantly by incorporation of carboxyl groups (Bz-pA) showing thereby the catalytic effect of acid functionality. Bz polymers showed good thermal stability and incorporation of Bz-pA in blends resulted in a highly cross-linked network. The interlaminar shear strength of glass fabric reinforced composites and the lap shear strength of metal–metal joints using these resin blends was also investigated.  相似文献   

5.
In the present work, an attempt has been made to develop bio-based composites using cardanol and eugenol based benzoxazine matrices with bio-silica as well as natural fibrous materials (coir felt, kapok fabric, jute felt and rice husk) as reinforcements. The bio-composites developed were studied for different applications viz., dielectric, water repellent, oil-water separation, sound-absorption including corrosion resistance use. Among the bio-silica reinforced benzoxazine composites, 7 wt% bio-silica reinforced cardanol composites possesses the highest value of water contact angle (147°) and the lowest value of dielectric constant (2.0) than those of other bio-silica reinforced composites. Further, the cotton fabric was coated with cardanol and eugenol based polybenzoxazines separately, whose values of water contact angles are found to be 159° and 157° with oil-water separation efficiency as 96% and 95% respectively. Furthermore, the cardanol based benzoxazine was separately reinforced with jute felt, coir felt, kapok fabric and rice-husk. The corresponding sound absorption efficiency was found to increase in the following order, Neat polybenzoxazine < rice husk < coir felt < kapok fabric < jute felt. Data resulted from corrosion studies, it was noticed that the mild steel specimen coated with bio-based benzoxazine matrices and bio-silica reinforced benzoxazine composites coated specimens exhibit an excellent resistance to corrosion. Data resulted from different studies, it is suggested that the cardanol and eugenol based bio-composites can be considered as an effective materials for microelectronics insulation, water repellent, oil-water separation, sound absorption and corrosion resistant applications.  相似文献   

6.
We report our work for preparing cross‐linked polyimide via a series of imide functional benzoxazine resins as precursors. The structures of synthesized monomers have been confirmed by 1H NMR and FT‐IR. Among this class of benzoxazine monomers, the ortho‐imide functional benzoxazine resins show useful features both in the synthesis of benzoxazine monomers and the properties of the corresponding thermosets. For the cross‐linked polyimides based on ortho‐imide functional benzoxazine, an additional route is adopted to form a more thermally stable cross‐linked polybenzoxazole with the release of carbon dioxide. The ortho‐imide functional benzoxazine resins show the possibility to form high performance and even super high performance thermosets with low cost and easy processability. The thermal properties are evaluated by DSC and TGA. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1330–1338  相似文献   

7.
Novel polyacetylenes, poly( 1 ) and poly( 2 ) substituted with benzoxazine rings were synthesized by the polymerization of the corresponding acetylene monomers 1 and 2 using Rh catalysts, [(nbd)RhCl]2, and (nbd)Rh+BPh4 (nbd = 2,5‐norbornadiene). The polymers were heated at 250 °C under N2 to obtain the corresponding polybenzoxazine resins, poly( 1 )′ and poly( 2 )′ possessing polyacetylene main chains via the ring‐opening polymerization of the benzoxazine moieties. The polyacetylene backbones were maintained after crosslinking reaction at 250 °C, which were confirmed by Raman spectroscopy. The benzoxazine resins were thermally highly stable as evidenced by differential scanning calorimetry and thermogravimetric analysis. The surface of poly( 1 )′ film became hydrophilic compared to that of poly( 1 ), while the surfaces of poly( 2 ) and poly( 2 )′ films showed almost the same hydrophilicity judging from the water contact angle measurement. Poly( 1 )′ and poly( 2 )′ exhibited refractive indices smaller than those of poly( 1 ) and poly( 2 ). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1884–1893  相似文献   

8.
Summary A simple and sensitive method for the determination of trace amounts of bisphenol-A (BPA), bisphenol-A diglycidyl dimethacrylate (bis-GMA), bisphenol-A dimethacrylate (bis-DMA) and triethyleneglycol dimethacrylate (TEGDMA) in human saliva is proposed. These materials are used in dental restorations, as composites and sealants, and are sometimes detected in human saliva after dental treatment. The proposed method involves protein precipitation using acetonitrile followed by acidification, evaporation of the solvent and dissolution with dichloromethane prior to injection into a GC-MS. Thermal derivatization in the injection system was used for the identification and quantification of bis-GMA. Clean-up is not necessary using SIM mode. Bisphenol-F (BPF) was used as internal standard. The linear range was 15 to 1000 μg·L−1 for BPA, 50 to 10 000 μg·L−1 for bis-GMA, 50 to 1000 μg·L−1 for bis-DMA and 1 to 100 μg·L−1 for TEGDMA. The detection limits were 3,15,10 and 0.3 μg·L−1 for BPA, bis-GMA, bis-DMA and TEGD-MA, respectively. Validation of the proposed method was carried out by using the standard addition methodology. Samples of 10 mL of human saliva collected 1 h after dental treatment were analysed in order to assess the applicability of the method to detect and quantify such compounds originated from methacrylic resins used in odontological treatment.  相似文献   

9.
《先进技术聚合物》2018,29(1):355-363
Two new polybenzoxazine copolymers were synthesized by polymerizing conventional benzoxazine monomer with varying weight percentage of tetraphenylimidazole and diphenylquinoline. The tetrasubstituted imidazole was synthesized through Debus‐Radziszewski imidazole synthesis method, and quinoline derivative was synthesized through Friedlander quinoline synthesis, and their structure was confirmed through FTIR, 1HNMR, and MASS spectral analysis. New polybenzoxazine copolymers were synthesized by polymerizing conventional benzoxazine monomer with varying weight percentage of (10, 20, and 30%) of phenolic tetraphenylimidazole and diphenylquinoline. The polybenzoxazines cocured with 10, 20, and 30 wt% of imidazole derivative showed a band gap of 2.27, 2.08, and 2.2 eV, respectively, and the quinoline derivative incorporated at 10, 20, and 30 wt% in to polybenzoxazines exhibited a band gap of 2.26, 2.3, and 2.03 eV, respectively. The polybenzoxazines cocured with phenolic imidazoles and quinolines have high glass transition and thermal degradation stability in addition to significant improvement in optical and electrochemical properties than that of conventional bisphenol‐based polybenzoxazines.  相似文献   

10.
Bis(m‐aminophenyl)methylphosphine oxide based benzoxazine (Bz‐BAMPO) was obtained using a three‐step synthetic method from the aromatic diamine and 2‐hydroxybenzaldehyde as starting materials. The structure and purity of the monomer was confirmed by elemental analysis, FTIR, 1H NMR, 13C NMR and 31P NMR spectra. The curing kinetics of Bz‐BAMPO was investigated by nonisothermal differential scanning calorimetry (DSC) at different heating rates and by FTIR spectroscopy. The isoconversional method was used to evaluate the dependence of the effective activation energy on the extent of conversion. The evolving factor analysis (EFA) method was applied to the spectroscopic FTIR data obtained in monitoring benzoxazine homopolymerizations. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7162–7172, 2008  相似文献   

11.
In the study, a fast and selective method based on magnetic separation has been developed for the extraction of nicotine from human plasma using magnetic strong cation exchange (MSCX) resins as adsorbent. MSCX resins were prepared using hydrophobic Fe3O4 magnetite as magnetically susceptible component, styrene and acrylic acid as polymeric matrix components, and acetyl sulfonate as the sulfonation agent. The extraction procedure was carried out in a single step by stirring the mixture of diluted plasma sample and MSCX resins in the vortex for 5 min. Then, the resins with adsorbed nicotine were separated from the sample matrix by applying an appropriate magnetic field. Main factors affecting the extraction of nicotine such as the amount of MSCX resins, pH value of the extraction solvent, extraction time, and washing and eluting conditions were optimized. The nicotine eluted from the resins was determined by liquid chromatography–tandem mass spectrometry. The calibration curve obtained by analyzing matrix-matched standards shows excellent linear relationship (r 2 = 0.9998) in the concentration range of 10–2,500 ng mL−1. The limit of detection and quantification obtained are 2.9 and 9.7 ng mL−1, respectively. The relative standard deviations of intra- and inter-day obtained are in the range of 1.9–6.9% and 2.5–7.8% with the recoveries ranging from 78.7% to 99.1%. The proposed method was successfully applied to determine nicotine in human plasma phlebotomized from ten male smokers. Nicotine was detectable with the contents ranging from 44.4 to 221.9 ng mL−1 in five samples.  相似文献   

12.
The present work describes the development and validation of an analytical method based on liquid chromatography (LC), coupled with tandem mass spectrometry (MS/MS) that allows the determination and confirmation of several endocrine-disrupting chemicals (EDCs) in honey. The EDCs studied were nine phenols of different nature: chlorophenols (2,4-dichlorophenol, 2,4,5-trichlorophenol, and pentachlorophenol), alkylphenols (4-tert-butylphenol, 4-tert-octylphenol, and 4-n-octylphenol) bisphenols (bisphenol-A and bisphenol-F), and 4-tert-butylbenzoic acid. The method incorporates a restricted-access material (RAM), coupled on-line to the LC-MS/MS system, which allows direct injection of the matrix into the RAM-LC-MS/MS system. The optimized method developed, RAM-LC-MS/MS, was applied to fortified honey samples, affording detection limits in the 0.6–7.2 ng g−1 range, calculated for a signal-to-noise ratio of 3. In addition, the method was validated as a quantitative confirmatory method according to European Union Decision 2002/657/EC. The validation criteria evaluated were linearity, repeatability, reproducibility, recovery, decision limits, detection capabilities, specificity, and ruggedness. Repeatability and within-laboratory reproducibility were evaluated at two concentration levels, being ±11% or below at 20 ng g−1. The decision limits (CCα) and detection capabilities (CCβ) were in the 1.7–12.6 and 2.8–21.6 ng g−1 range, respectively.  相似文献   

13.
New organic aerogels were successfully prepared from a new class of phenolic resins called polybenzoxazines synthesized via conventional thermal curing reaction of a benzoxazine monomer using xylene as a solvent. Without the need for using supercritical conditions to remove the solvent during the process, the carbon aerogels were obtained with a much shortened time. From two different concentrations of benzoxazine solution, 20 and 40 wt%, the resulting polybenzoxazine aerogels, having densities of 260 and 590 kg/m3, respectively, were obtained after the curing process. The subsequent carbon aerogels were prepared by the carbonization of polybenzoxazine aerogels. The corresponding carbon aerogels exhibited a microporous structure with pore diameters less than 2 nm, the densities of 300 and 830 kg/m3, and surface area of 384 and 391 m2/g, respectively. The texture of the carbon aerogels was denser than that of their organic aerogel precursor, as evidenced by scanning electron microscopy. The transformation of the polybenzoxazine aerogel to the carbon aerogel was clearly observed using fourier transform infrared spectroscopy.  相似文献   

14.
A novel hyperbranched polyphosphate ester (HPPE) was synthesized via the polycondensation of bisphenol-A as an A2 monomer and phosphoryl trichloride as a B3 monomer at 100 °C, without gelation. The initial molar ratio of A2 to B3 was set to be 1.5:1. The final product was precipitated from methanol. 31P NMR spectroscopy was used to monitor the reaction. The formed HPPE was characterized by FTIR and 1H NMR to confirm its end groups. Differential scanning calorimetry data revealed that the cured bisphenol-A epoxy resin with HPPE as a curing agent possessed improved glass transition temperature. Dynamic mechanical thermal analysis also showed the increase in the glass transition temperature. The thermal degradation properties and flame retardancy were investigated by thermogravimetric analysis and limiting oxygen index (LOI). The results showed that the incorporation of HPPE into bisphenol-A epoxy resin increased its thermal stability and char yield during the decomposition by raising the second stage decomposition temperature. The LOI value increased from 23 to 31 when HPPE, instead of bisphenol-A, was used as a curing agent.  相似文献   

15.
Monofunctional benzoxazine with ortho‐methylol functionality has been synthesized and highly purified. The chemical structure of the synthesized monomer has been confirmed by 1H and 13C nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT‐IR) and elemental analysis. One‐dimensional (1D) 1H NMR is used with respect to varied concentration of benzoxazines to study the specific nature of hydrogen bonding in both ortho‐methylol functional benzoxazine and its para counterpart. The polymerization behavior of benzoxazine monomer has been also studied by in situ FT‐IR and differential scanning calorimetry, experimentally supporting the polymerization mechanism of ortho‐methylol functional benzoxazine we proposed before. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3635–3642  相似文献   

16.
In this work, the successful application of atom transfer radical polymerization (ATRP) to cardanyl acrylate, a polymerizable monomer derived from a renewable resource cardanol, is reported. Polycardanyl acrylate and poly(methylmethacrylate)‐cardanyl acrylate copolymers were prepared in bulk ATRP, using Copper(I) bromide/N, N, N′, N′, N″‐pentamethyl diethylene triamine (PMDETA) catalyst system at 95 °C in combination with ethyl‐2‐bromo isobutyrate initiator. The copolymers had mol. wt. (Mn) in the range 8300–2400 g/mol and polydispersity index (PDI) 1.27–2.00, depending upon the [M]0/[I]0 ratio. 1H NMR analysis of the copolymer showed that unsaturation in the side chain of cardanyl acrylate is unaffected under the conditions of ATRP. This was further confirmed by studying the curing reaction of polycardanyl acrylate by supported dynamic mechanical thermal analysis (DMTA) in dual cantilever mode. The thermogravimetric analysis shows that the copolymers have improved thermal stability, by about 35 °C, in comparison with pure PMMA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5953–5961, 2005  相似文献   

17.
A simple and rapid analytical method based on in-matrix ethyl chloroformate (ECF) derivatization has been developed for the quantitative determination of bisphenol-A (BPA) in milk and water samples. The samples containing BPA were derivatised with ECF in the presence of pyridine for 20 s at room temperature, and the non-polar derivative thus formed was extracted using polydimethylsiloxane solid-phase microextraction (SPME) fibres with thicknesses of 100 μm followed by analysis using gas chromatography–mass spectrometry. Three alkyl chloroformates (methyl, ethyl and isobutyl chloroformate) were tested for optimum derivatisation yields, and ECF has been found to be optimum for the derivatisation of BPA. Several parameters such as amount of ECF, pyridine and reaction time as well as SPME parameters were studied and optimised in the present work. The limit of detection for BPA in milk and water samples was found to be 0.1 and 0.01 μg L−1, respectively, with a signal-to-noise ratio of 3:1. The limit of quantitation for BPA in milk and water was found to be 0.38 and 0.052 μg L−1, respectively, with a signal-to-noise ratio of 10:1. In conclusion, the method developed was found to be rapid, reliable and cost-effective in comparison to silylation and highly suitable for the routine analysis of BPA by various food and environmental laboratories.  相似文献   

18.
Curing kinetics of diglycidyl ether of bisphenol-A (DGEBA) in the presence of maleic anhydride (MA)/or nadic anhydride (NA) or mixture of MA/NA: 4,4′-diaminodiphenyl sulfone (DDS) in varying molar ratios were investigated using differential scanning calorimetry. Curing behaviour of DGEBA in the presence of varying amounts of DDS:MA/NA was evaluated by recording DSC scans at heating rates of 5, 10, 15 and 20°C min−1. The peak exotherm temperature depends on the heating rate, structure of the anhydride as well as on the ratio of anhydride: DDS. Thermal stability of the isothermally cured resins was evaluated by thermogravimetry. The char yield was highest in case of resins cured using mixture of DDS:MA (0.75:0.25; sample EM-1) and DDS:NA (0.75:0.25, sample EN-1).  相似文献   

19.
The objective of this research was to develop, optimize, and validate a modern, rapid method of preparation of human hair samples, using microwave irradiation, for analysis of eight tricyclic antidepressants (TCADs): nordoxepin, nortriptyline, imipramine, amitriptyline, doxepin, desipramine, clomipramine, and norclomipramine. It was based on simultaneous alkaline hair microwave-assisted hydrolysis and microwave-assisted extraction (MAH–MAE). Extracts were analyzed by high-performance liquid chromatography with diode-array detection (HPLC–DAD). A mixture of n-hexane and isoamyl alcohol (99:1, v/v) was used as extraction solvent and the process was performed at 60°C. Application of 1.0 mol L−1 NaOH and microwave irradiation for 40 min were found to be optimum for hair samples. Limits of detection ranged from 0.3 to 1.2 μg g−1 and LOQ from 0.9 to 4.0 μg g−1 for the different drugs. This enabled us to quantify them in hair samples within average therapeutic concentration ranges.  相似文献   

20.
A novel bisphenol-AP-aniline-based benzoxazine monomer (B-AP-a) was synthesized from the reaction of 4,4′-(1-phenylethylidene) bisphenol (bisphenol-AP) with formaldehyde and aniline. The chemical structures were identified by FT-IR, 1H and 13C NMR analyses. The polymerization behavior of the monomer and the types of hydrogen bonding species were monitored by differential scanning calorimetry (DSC) and FT-IR. The curing kinetics was studied by isothermal DSC and the isothermal kinetic parameters were determined. The thermal properties of cured benzoxazine were measured by DSC and thermogravimetric analysis (TGA). The bisphenol-AP-aniline-based polybenzoxazine (poly(B-AP-a)) exhibited higher glass transition temperature (Tg) and better thermal stability than corresponding bisphenol A-aniline-based polybenzoxazines (poly(BA-a)). The Tg value of poly(B-AP-a) is 171 °C. The temperatures corresponding to 5% and 10% weight loss is 317 and 347 °C, respectively, and the char yield is 42.2% at 800 °C. The isothermal curing behavior of B-AP-a displayed autocatalysis and diffusion control characteristics. The modified autocatalytic model showed good agreement with experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号