首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a previous paper the author has associated with every inverse system of compact Hausdorff spaces X with limit X and every simplicial complex K (possibly infinite) with geometric realization P=|K| a resolution RK(X) of X×P, which consists of paracompact spaces. If X consists of compact polyhedra, then RK(X) consists of spaces having the homotopy type of polyhedra. In the present paper it is proved that this construction is functorial. One of the consequences is the existence of a functor from the strong shape category of compact Hausdorff spaces X to the shape category of spaces, which maps X to the Cartesian product X×P. Another consequence is the theorem which asserts that, for compact Hausdorff spaces X, X, such that X is strong shape dominated by X and the Cartesian product X×P is a direct product in Sh(Top), then also X×P is a direct product in the shape category Sh(Top).  相似文献   

2.
Within the class of Tychonoff spaces, and within the class of topological groups, most of the natural questions concerning ‘productive closure’ of the subclasses of countably compact and pseudocompact spaces are answered by the following three well-known results: (1) [ZFC] There is a countably compact Tychonoff space X such that X × X is not pseudocompact; (2) [ZFC] The product of any set of pseudocompact topological groups is pseudocompact; and (3) [ZFC+ MA] There are countably compact topological groups G0, G1 such that G0 × G1 is not countably compact.In this paper we consider the question of ‘productive closure” in the intermediate class of homogeneous spaces. Our principal result, whose proof leans heavily on a simple, elegant result of V.V. Uspenski?, is this: In ZFC there are pseudocompact, homogeneous spaces X0, X1 such that X0 × X1 is not pseudocompact; if in addition MA is assumed, the spaces Xi may be chosen countably compact.Our construction yields an unexpected corollary in a different direction: Every compact space embeds as a retract in a countably compact, homogeneous space. Thus for every cardinal number α there is a countably compact, homogeneous space whose Souslin number exceeds α.  相似文献   

3.
We define a pair (F,U) to be a closed set F and an open set U such that F ? U. A sequence of pair collections is used to characterize stratifiable spaces instead of a sequence of neighbornets. We introduce a new class of spaces, called regularly stratifiable spaces, which is defined in terms of pair collections. Every stratifiable μ -space is regularly stratifiable, and every regularly stratifiable space has a σ -almost locally finite base, thus is hereditary M1. J. Nagata's problem for the dimension of M1 -spaces is answered positively in the class of regularly stratifiable spaces.  相似文献   

4.
5.
No convenient internal characterization of spaces that are productively Lindelöf is known. Perhaps the best general result known is Alster?s internal characterization, under the Continuum Hypothesis, of productively Lindelöf spaces which have a basis of cardinality at most 11. It turns out that topological spaces having Alster?s property are also productively weakly Lindelöf. The weakly Lindelöf spaces form a much larger class of spaces than the Lindelöf spaces. In many instances spaces having Alster?s property satisfy a seemingly stronger version of Alster?s property and consequently are productively X, where X is a covering property stronger than the Lindelöf property. This paper examines the question: When is it the case that a space that is productively X is also productively Y, where X and Y are covering properties related to the Lindelöf property.  相似文献   

6.
We consider special subclasses of the class of Lindelöf Σ-spaces obtained by imposing restrictions on the weight of the elements of compact covers that admit countable networks: A space X is in the class LΣ(?κ) if it admits a cover by compact subspaces of weight κ and a countable network for the cover. We restrict our attention to κ?ω. In the case κ=ω, the class includes the class of metrizably fibered spaces considered by Tkachuk, and the P-approximable spaces considered by Tka?enko. The case κ=1 corresponds to the spaces of countable network weight, but even the case κ=2 gives rise to a nontrivial class of spaces. The relation of known classes of compact spaces to these classes is considered. It is shown that not every Corson compact of weight 1 is in the class LΣ(?ω), answering a question of Tkachuk. As well, we study whether certain compact spaces in LΣ(?ω) have dense metrizable subspaces, partially answering a question of Tka?enko. Other interesting results and examples are obtained, and we conclude the paper with a number of open questions.  相似文献   

7.
It is known that a compact space can fail to be sequentially compact. In this paper we consider the following problem: when does a space admit a sequentially compact T2 compactification? In the first section we develop a method to produce such compactifications, and we apply it in the second section to study the question using coverings.Moreover, we obtain solutions for locally compact T2 spaces, and for metrizable spaces.  相似文献   

8.
In this note we give ZFC results that reduce the question of Maarten Maurice about the existence of σ-closed-discrete dense subsets of perfect generalized ordered spaces to the study of very special Baire spaces, and we discuss the current status of the question for spaces with small density. Work of Shelah, Todor?evic, Qiao, and Tall shows that Maurice's problem is undecidable for generalized ordered spaces of local density ω1.  相似文献   

9.
In 2003 the author has associated with every cofinite inverse system of compact Hausdorff spaces X with limit X and every simplicial complex K (possibly infinite) with geometric realization P=|K| a resolution R(X,K) of X×P, which consists of paracompact spaces. If X consists of compact polyhedra, then R(X,K) consists of spaces having the homotopy type of polyhedra. In two subsequent papers the author proved that R(X,K) is a covariant functor in each of its variables X and K. In the present paper it is proved that R(X,K) is a bifunctor. Using this result, it is proved that the Cartesian product X×Z of a compact Hausdorff space X and a topological space Z is a bifunctor SSh(Cpt)×Sh(Top)→Sh(Top) from the product category of the strong shape category of compact Hausdorff spaces SSh(Cpt) and the shape category Sh(Top) of topological spaces to the category Sh(Top). This holds in spite of the fact that X×Z need not be a direct product in Sh(Top).  相似文献   

10.
We continue the study of Selectively Separable (SS) and, a game-theoretic strengthening, strategically selectively separable spaces (SS+) (see Barman, Dow (2011) [1]). The motivation for studying SS+ is that it is a property possessed by all separable subsets of Cp(X) for each σ-compact space X. We prove that the winning strategy for countable SS+ spaces can be chosen to be Markov. We introduce the notion of being compactlike for a collection of open sets in a topological space and with the help of this notion we prove that there are two countable SS+ spaces such that the union fails to be SS+, which contrasts the known result about SS spaces. We also prove that the product of two countable SS+ spaces is again countable SS+. One of the main results in this paper is that the proper forcing axiom, PFA, implies that the product of two countable Fréchet spaces is SS, a statement that was shown in Barman, Dow (2011) [1] to consistently fail. An auxiliary result is that it is consistent with the negation of CH that all separable Fréchet spaces have π-weight at most ω1.  相似文献   

11.
The main purpose of this paper is to settle the following problem concerning a product formula for the Tychonoff functor τ, by introducing the notion of w-compact spaces: Characterize a topological space X such that τ(X×Y)=τ(Xτ(Y) for any topological space Y. We also study the properties of w-compact spaces, and it is proved that, for any family {Xα} of w-compact spaces, the product ΠXα is also w-compact and τ(ΠXα)=Πτ(Xα).  相似文献   

12.
We prove that every scattered space is hereditarily subcompact and any finite union of subcompact spaces is subcompact. It is a long-standing open problem whether every ?ech-complete space is subcompact. Moreover, it is not even known whether the complement of every countable subset of a compact space is subcompact. We prove that this is the case for linearly ordered compact spaces as well as for ω  -monolithic compact spaces. We also establish a general result for Tychonoff products of discrete spaces which implies that dense GδGδ-subsets of Cantor cubes are subcompact.  相似文献   

13.
We explore the relation between two general kinds of separation properties. The first kind, which includes the classical separation properties of regularity and normality, has to do with expanding two disjoint closed sets, or dense subsets of each, to disjoint open sets. The second kind has to do with expanding discrete collections of points, or full-cardinality subcollections thereof, to disjoint or discrete collections of open sets. The properties of being collectionwise Hausdorff (cwH), of being strongly cwH, and of being wD(1), fall into the second category. We study the effect on other separation properties if these properties are assumed to hold hereditarily. In the case of scattered spaces, we show that (a) the hereditarily cwH ones are α-normal and (b) a regular one is hereditarily strongly cwH iff it is hereditarily cwH and hereditarily β-normal. Examples are given in ZFC of (1) hereditarily strongly cwH spaces which fail to be regular, including one that also fails to be α-normal; (2) hereditarily strongly cwH regular spaces which fail to be normal and even, in one case, to be β-normal; (3) hereditarily cwH spaces which fail to be α-normal. We characterize those regular spaces X such that X×(ω+1) is hereditarily strongly cwH and, as a corollary, obtain a consistent example of a locally compact, first countable, hereditarily strongly cwH, non-normal space. The ZFC-independence of several statements involving the hereditarily wD(1) property is established. In particular, several purely topological statements involving this property are shown to be equivalent to b=ω1.  相似文献   

14.
We study compact spaces which are obtained from metric compacta by iterating the operation of inverse limit of continuous sequences of retractions. This class, denoted by R, has been introduced in [M. Burke, W. Kubi?, S. Todor?evi?, Kadec norms on spaces of continuous functions, http://arxiv.org/abs/math.FA/0312013]. Allowing continuous images in the definition of class R, one obtains a strictly larger class, which we denote by RC. We show that every space in class RC is either Corson compact or else contains a copy of the ordinal segment ω1+1. This improves a result of Kalenda from [O. Kalenda, Embedding of the ordinal segment [0,ω1] into continuous images of Valdivia compacta, Comment. Math. Univ. Carolin. 40 (4) (1999) 777-783], where the same was proved for the class of continuous images of Valdivia compacta. We prove that spaces in class R do not contain cutting P-points (see the definition below), which provides a tool for finding spaces in RC?R. Finally, we study linearly ordered spaces in class RC. We prove that scattered linearly ordered compacta belong to RC and we characterize those ones which belong to R. We show that there are only 5 types (up to order isomorphism) of connected linearly ordered spaces in class R and all of them are Valdivia compact. Finally, we find a universal pre-image for the class of all linearly ordered Valdivia compacta.  相似文献   

15.
16.
We identify some remnants of normality and call them rudimentary normality, generalize the concept of submetacompact spaces to that of a weakly subparacompact space and that of a weakly? subparacompact space, and make a simultaneous generalization of collectionwise normality and screenability with the introduction of what is to be called collectionwise σ-normality. With these weak properties, we show that,1) on weakly subparacompact spaces, countable compactness = compactness, ω1-compactness = Lindelöfness;2) on weakly subparacompact Hausdorff spaces with rudimentary normality, regularity = normality = countable paracompactness; and3) on weakly subparacompact regular T1-spaces with rudimentary normality, collectionwise σ-normality = screenability = collectionwise normality = paracompactness.The famous Normal Moore Space Conjecture is thus given an even more striking appearance and Worrell and Wicke?s factorization of paracompactness (over Hausdorff spaces) along with Krajewski?s are combined and strengthened. The methodology extends itself to the factorization of paracompactness on locally compact, locally connected spaces in the manner of Gruenhage and on locally compact spaces in that of Tall, and to the factorization of subparacompactness and metacompactness in the genre of Katuta, Chaber, Junnila and Price and Smith and that of Boone, improving all of them.  相似文献   

17.
The notion of shape fibration was introduced by Marde?i? and Rushing. In this paper we use ‘fibrant space’ techniques in strong shape theory to prove that every shape fibration p:EB of compact metric spaces is contained in a map of fibrant spaces p′:E′→B′ which enjoys a certain lifting property and whose homotopy properties reflect the strong shape properties of the map p. Standard methods for studying Hurewicz fibrations are readily applied to the map p' and in this way we obtain a number of strong shape generalizations of results of Marde?i? and Rushing. We also prove the following theorem which answers a question of Rushing: A shape fibration of compact metric spaces which is a strong shape equivalence is an hereditary shape equivalence. Since the converse was known, this gives a characterization of hereditary shape equivalences.  相似文献   

18.
We develop a bicompletion theory for the category Ap0 of T0 approach spaces in the sense of Lowen [R. Lowen, Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad, Oxford University Press, Oxford, 1997], which extends the completion theory obtained in [R. Lowen, K. Robeys., Completions of products of metric spaces, Quart. J. Math. Oxford 43 (1991) 319-338] for the subcategory of Hausdorff uniform approach spaces. Moreover, we prove it to be firmly epireflective (in the sense of [G.C.L. Brümmer, E. Giuli, A categorical concept of completion of objects, Comment. Math. Univ. Carolin. 33 (1992) 131-147]) with respect to a certain morphism class of dense embeddings.  相似文献   

19.
20.
The authors consider interrelations between the completeness of certain initial di-uniformities and the real dicompactness of completely biregular bi-T2 nearly plain ditopological spaces. Completions and real dicompactifications of almost plain spaces are also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号