共查询到19条相似文献,搜索用时 62 毫秒
1.
在全球阻燃材料无卤化的推进过程中,氮系、磷系、硅系等阻燃剂以及其复配物受到各国研究人员的广泛关注。利用聚合法(原位聚合法和共聚法)制备阻燃尼龙,可有效解决共混法中常存在的阻燃剂在基体中分散不均匀而导致的材料性能下降的问题。原位聚合法和共聚法是根据阻燃成分在基体中的存在方式而区分的,通常前者以物理均匀分散为主,后者多以化学键结合。本文在不同制备方法的背景下,根据阻燃剂类别进一步细分,综述了用原位聚合法和共聚法制备无卤阻燃尼龙的相关研究,并探讨了该领域中亟待解决的问题及未来发展方向。 相似文献
2.
乙烯系单体自由基聚合的阻聚效应研究 Ⅺ.羟胺类化合物对醋酸乙烯酯和丙烯腈自由基聚合的影响及链转移常数的测定 总被引:3,自引:0,他引:3
The effects of the addition of 2.38×10-2 to 2.86×10-2 M AIBN and 8.8×10-2 to 6.1×10-4 M six substituted hydroxylamines, such as, N,N-diethlhydroxylamine (DEHA), N,N'-diisopro-pylhydroxylamine (DIPHA), N-hydroxyl-mofpholine ; (MPHA), 2,2,6,6-tetramethyl-4-hydro xyl-piperidinehydroxylamine (TMHPHA), N-phenylhydroxylamine (PHA) and N,N'-diph-enylhydroxyamine (DPHA) at 60℃ on the bulk polymerization of vinyl acetate (VAC) and .acrylonitrile (AN) has been studied respectively. The results showed that all six hydroxyla-mines exhibited inhibiting properties. The effect is more pronounced for VAC than for AN. At the sametime the chain transfer constants (Cs) of these compounds in bulk polymerization of VAC and AN has been calculated respectively by Mayo equation. The result demonstrated that the Cs value for VAC in bulk polymerization is larger than that of AN under same condition. These differences not only depend on the structure of six hydroxylamines and the nitroxide ra-dical derved from them in reaction,but also on the electron-donating or electronaccepting pro-perties of monomers used and radicals formed. 相似文献
3.
阻燃PVA-g-AN的制备、表征及性能 总被引:1,自引:0,他引:1
以K2S2O8-NaHSO3氧化还原体系为引发剂, 将丙烯腈(AN)接枝到聚乙烯醇(PVA)上, 得到聚乙烯醇接枝丙烯腈聚合物(PVA-g-AN), 将其与磷酸-尿素反应制备阻燃聚乙烯醇接枝丙烯腈聚合物(FR-PVA-g-AN). 利用傅里叶变换红外光谱(FTIR)、 X射线能谱(XPS)和X射线衍射(XRD)对其结构进行表征, 并用热重分析(TGA)对其热性能进行研究. 结果表明, 当引发剂用量占反应物总质量的1%, n(K2S2O8):n(NaHSO3)=5:1, m(丙烯腈):m(聚乙烯醇)=3.5:1, 70 ℃反应4 h时, 接枝率可达190%; 在m(磷酸):m(尿素)=5:1, 85 ℃条件下处理接枝产物PVA-g-AN 4 h时, 获得阻燃性能良好的FR-PVA-g-AN, 700 ℃马弗炉热处理后, 残炭量达到63%. TGA结果显示, FR-PVA-g-AN的热降解过程较PVA减慢, 且800 ℃后残炭量由PVA的3.12%增加到54.3%, 说明FR-PVA-g-AN具有优异的热稳定性和成炭性. 相似文献
4.
聚氨酯泡沫塑料是用量最大的泡沫材料之一,具有低密度、高强度、耐腐蚀、高隔热等优点,广泛应用于防震、减震、软性衬垫材料和建筑隔热保温等多个领域.然而,聚氨酯泡沫高度易燃,燃烧时伴随大量热和有毒烟气释放,对人民生命财产安全造成严重威胁.传统的含卤阻燃由于生物毒性及环境累积性受到严重限制,无卤阻燃已成为聚氨酯泡沫阻燃的发展趋势.本文介绍了聚氨酯泡沫的燃烧特点及阻燃机理,从添加型、反应型和表面后处理的不同阻燃方式阐述了聚氨酯泡沫无卤阻燃的研究进展,并深入分析了这些研究对泡沫阻燃的贡献、作用机理及关键影响因素,最后对聚氨酯泡沫的阻燃研究前景进行了展望,环境友好、高效、高阻燃抑烟、可循环回收是聚氨酯泡沫阻燃未来发展的重要方向. 相似文献
5.
膨胀型无卤阻燃HIPS热分解动力学及阻燃机理研究 总被引:1,自引:0,他引:1
利用动态热失重法(TGA)研究了一种新型的膨胀型无卤阻燃高抗冲聚苯乙烯(HIPS)热降解反应动力学及阻燃机理, 通过对Kissinger模型和Coat-Redern (C-R)模型求解的热降解反应的动力学参数对比, 最终确定反应的动力学参数. 其中, 反应级数n的确定是通过一般反应对Ea/RTmax取值范围的限定, 利用最大热降解速率所对应的失重率αmax与n的关系, 确定其取值. 并采用TGA-FTIR及Py-GC/MS对材料气相产物及热裂解产物进行了阻燃机理的研究. 研究表明, 两种反应的热降解反应动力学参数基本一致, 其中阻燃HIPS的平均表观活化能小于纯HIPS, 说明在HIPS分解之前, 无卤阻燃剂已经开始分解, 释放的难燃气体(氨气及其衍生物、水蒸气等)在气相中起到阻燃的作用. 同时阻燃剂的添加, 促使反应向链转移反应飘移, 使燃烧产物中非单体化合物增加, 而在凝聚相中形成的致密的炭层结构也起到阻燃的效果. 相似文献
6.
7.
8.
9.
丙烯腈在1-丁基-3-甲基咪唑氯化物中的聚合及其表征 总被引:2,自引:0,他引:2
以离子液体1-丁基-3-甲基咪唑氯化物([bmim]Cl)为溶剂,研究了丙烯腈(AN)的自由基均聚和共聚反应,通过红外光谱(FT-IR)和核磁共振(NMR)分析了聚合产物的化学结构,研究了第二单体丙烯酸甲酯(MA)的含量对聚合反应速率及转化率的影响.结果表明:以离子液体为溶剂所得聚丙烯腈(PAN)的化学结构与在常规溶剂中的一致,聚合产物的组成比与投料比接近,分子量随着AN含量的增加而增大,反应转化率随着AN含量的增加先增大后减小,所得PAN的分子量分布窄(<1.7)、分子量高.差示扫描量热分析(DSC)结果表明:MA含量低于2%时有利于环化反应的控制. 相似文献
10.
11.
以氯化螺环磷酸酯(1)和对甲苯胺(2)为原料,经亲核取代反应合成了三源一体的新型单分子磷-氮膨胀型阻燃剂——季戊四醇螺环磷酰对甲苯胺(3),其结构经1H NMR和IR表征。考察了溶剂、原料配比、反应温度、反应时间和缚酸剂对3产率的影响。合成3的最佳反应条件为:乙腈为溶剂,三乙胺为缚酸剂,1 10mmol,n(1)∶n(2)=1∶3,于80℃反应4 h,产率79.3%。阻燃性能研究结果表明,3的初始分解温度为220℃,500℃成炭率达43.3%。 相似文献
12.
13.
以二氯磷酸苯酯(1)和γ-氨丙基三乙氧基硅烷(2)为原料,合成了一种新型的P-N-Si三元无卤阻燃剂--苯氧基-双-(三乙氧基硅丙基)磷酰胺(3),其结构经1H NMR, 31P NMR和FT-IR表征。研究了溶剂,反应温度,反应时间,投料比r[n(2) : n(1)]和缚酸剂对3产率的影响。结果表明:在最佳合成条件[THF为溶剂,三乙胺为缚酸剂,1 8 mmol, r=2.4,于40 ℃反应6 h]下, 3的产率为88.2%。利用TGA测试了3的阻燃性能。结果表明:3的初始分解温度为150 ℃, 600 ℃残炭为14.6%。3在棉纤维(c)中的添加量为15%(质量百分数,即c-315)时,600 ℃残炭为33.4%,高于c(7.6%)。 相似文献
14.
采用磷系阻燃剂2-羧乙基苯基次磷酸(CEPPA)作为第3单体,通过聚合反应制备了含磷的阻燃共聚酯。采用核磁共振、DSC、元素分析和极限氧指数仪表征阻燃共聚酯的化学组成、序列分布、结晶性能、磷含量和极限氧指数。结果表明:大部分CEPPA单元以无规分布的形式共聚到聚酯分子链中,小部分CEPPA单元以短嵌段的形式共聚在聚酯分子链中,且随着阻燃剂含量增加,无规系数变小。由于分子链的规整性下降,与聚对苯二甲酸乙二酯(PET)相比,阻燃共聚酯的Tg和Tm下降,结晶度减小。随阻燃剂含量的增加,极限氧指数值增加,当阻燃共聚酯中的磷含量达到9.08mg/g时,极限氧指数值达到33%以上。 相似文献
15.
16.
17.
18.
19.
采用恒定pH值共沉淀法在自制反应器中合成了不同原料配比的碳酸根型镁铝锌铁层状双羟基金属氧化物(MgAlZnFe-CO3 LDHs),并通过熔融共混MgAlZnFe-CO3 LDHs、聚磷酸铵(APP)、三聚氰胺(MA)和全降解材料聚丁二酸丁二醇酯(PBS)制备出PBS膨胀阻燃材料. 采用傅里叶红外光谱(FTIR)、热失重(TG)、X射线衍射(XRD)、扫描电子显微镜(SEM)及元素分析(ICP)对MgAlZnFe-CO3 LDHs进行了表征,并对PBS膨胀体系进行了力学性能和阻燃性能等测试. 结果表明,当Mg2+,Zn2+,Al3+和Fe3+的摩尔比为9:3:3:1时,合成的MgAlZnFe-CO3 LDHs热稳定性最好,晶态结构规整,呈形貌规则的六边形片状;当MgAlZnFe-CO3 LDHs的添加质量分数为1%时(阻燃剂的总添加质量分数为20%)时,PBS膨胀阻燃体系的极限氧指数(LOI)达到35%,垂直燃烧测试达到UL-94 V-0级别,力学性能得到较大改善. 实验结果表明,低添加量的MgAlZnFe-CO3 LDHs与膨胀阻燃剂(IFR)协效阻燃PBS,一方面能够改善膨胀阻燃剂恶化PBS力学性能的现象,另一方面协同效应能够明显提高PBS的阻燃性能. 相似文献