首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
金钯二元小团簇的几何结构与电子性质   总被引:1,自引:0,他引:1  
在UBP86/LANL2DZ和UB3LYP/def2-TZVP水平下详细研究了AumPdn(m+n≤6)团簇的几何结构和电子性质.阐明了团簇的结构特征、平均结合能、垂直电离势、垂直电子亲和能、电荷转移以及成键特征.除单取代混合团簇(AunPd和AuPdn,n=5或6)外,五和六原子混合团簇中钯原子趋于聚集到一起形成Pdcore,金原子分布在Pdcore周围形成PdcoreAushell结构.含一个和两个钯原子团簇的电子性质与纯金团簇类似,呈现一定奇偶振荡.混合团簇的电子性质,如最高占据分子轨道(HOMO),最低未占据分子轨道(LUMO),垂直电离势,垂直电子亲和能,Fermi能级和化学硬度等均与团簇空间结构和金、钯原子数之比直接相关.混合团簇中存在钯原子到金原子间的电荷转移,表明团簇中存在明显金钯间成键作用.分析团簇的电荷分布、前线轨道和化学硬度表明,金钯混合团簇对小分子如O2、H2和CO等的反应活性要强于纯金团簇.  相似文献   

2.
基于第一性原理密度泛函理论(DFT)方法研究了Pt掺杂的Au_(19)Pt团簇的结构稳定性、热力学稳定性和反应活性.计算得出Au_(19)Pt-V团簇比Au_(19)Pt-S和Au_(19)Pt-E团簇的化学活性更强,而热力学稳定性更低.通过分析吸附能和电荷布居,讨论了肉桂醛(CAL)在3类Au_(19)Pt团簇上的9种吸附构型.计算结果表明,当CAL以C C双键平行吸附于Au_(19)Pt-V团簇的Pt原子上时,其吸附能最大,CAL向团簇转移电子数最多,吸附模型最稳定.在最稳定吸附模型基础上探究了CAL选择性加氢的3类反应(1,2-加成反应、3,4-加成反应和1,4-加成反应)的6条可能机理,通过基元反应的过渡态搜索,由反应热、反应能垒和构型的变化得到,CAL分子在Au_(19)Pt-V团簇上最有可能通过3,4-加成反应中的机理C进行,即活泼H原子优先与C3原子成键形成中间体MS3,另一个H原子与中间体加成形成C4—H键,再经过过渡态TS34而形成最终产物苯丙醛(HCAL).  相似文献   

3.
应用遗传算法对二氧化硅团簇(SiO2)n(n≤20)的结构进行了优化计算。分析讨论了结构和结合能随团簇尺寸的变化规律,发现(SiO2)n团簇系列不存在明显的幻数,并在n≤20的范围内,不呈现出相应大块物质的结构特征,  相似文献   

4.
Ru_n(n=2~8)金属团簇的结构和能级分布的DFT研究   总被引:1,自引:0,他引:1  
采用密度泛函理论中的广义梯度近似(DFT/GGA)方法,对Run团簇(n = 2~8)的几何结构与稳定性、束缚能以及能级分布的关系进行了研究,并分析了随着团簇原子数的增加,团簇的几何结构和费米能级的变化,结果表明:Ru簇的几何结构在4个原子以前是平面结构,而从5个原子开始为空间立体的稳定结构,束缚能随金属原子数的增加而增加。能级结构呈明显的分立特征,费米能级随原子个数的增加而增加,但从Ru7开始又有所降低,且团簇的能量间隙逐渐减小,趋近于大块金属的能级特征。  相似文献   

5.
用密度泛函理论方法计算了CO分子吸附在有机配体聚乙烯吡咯烷酮poly(N-vinyl-2-pyrrolidone)(PVP)保护下的Au20团簇上的稳定构型的结构和性质。配体PVP通过物理吸附主要作用于Au20团簇的顶点位置。与Au20比较,配体的存在有利于CO的吸附和活化,其根本原因是PVP和CO在Au20表面分别作为供电子和吸电子基团产生的协同效应。中性及阴离子Au20团簇对配体和CO的吸附强度不同,前者对PVP吸附作用较强,后者对CO的吸附和活化作用较强。  相似文献   

6.
Au10团簇结构与电性质的理论研究   总被引:1,自引:0,他引:1  
韩哲  张冬菊  刘成卜 《化学学报》2009,67(5):387-391
使用4种流行的泛函(BPW91, B3PW91, PW91和B3LYP)考查了若干Au10团簇结构的稳定结构, 获得了能量最有利的6种异构体(其中2种以前未见报道), 并在此基础上进一步用MP2方法校准了它们的相对稳定性, 分析了它们的电子性质以及最稳定异构体与氧分子的化学反应性能. 计算结果表明Au10团簇异构体的相对稳定性明显依赖所使用的理论方法和泛函, 密度泛函结果显示Au10倾向于采用平面结构, 且不同的泛函给出异构体的相对稳定性次序也不相同, 而MP2计算则显示三维空间结构的Au10团簇更稳定, Au10可能是金团簇从二维结构到三维结构演化的一个临界点.  相似文献   

7.
从团簇角度对TiNi形状记忆合金进行了量子化学从头算研究。设计并优化了等原子比(TiNi)x(x=2~4)簇的多种可能几何结构,并对较稳定构型进行电子结构的分析。结果表明,等原子比的(TiNi)n团簇以TiNi成键为主要分子骨架,小团簇有较多能量接近的异构体,TiTi成键对能量降低有较大贡献。  相似文献   

8.
利用密度泛函理论(DFT)中的B3LYP方法,在6-311G(d)基组的水平上系统研究了CaSin(n=1~10)团簇的几何构型、稳定性与光谱(红外与拉曼)性质.研究结果表明,CaSin团簇构型是在CaSin-1构型上戴帽1个原子而形成的;当n≥4,CaSin团簇的最低能量结构均为立体构型;Ca原子的掺杂降低了体系的化学稳定性;CaSi3与CaSi5是幻数结构;在相同的观察频段内,CaSi3团簇的红外与拉曼活性在低频段均表现较好,而在高频段拉曼活性则表现较差,与之不同的是CaSi5团簇的红外与拉曼活性在整个频段内都表现的较好.  相似文献   

9.
采用密度泛函理论研究了噻吩在立方正八面体的M_(13)(M=Au、Pt)团簇上的吸附和加氢脱硫行为。结果表明,噻吩以环吸附于Au_(13)上的Hol-tri位或Pt_(13)上的Hol-quadr位时最稳定,且Pt_(13)上的吸附稳定性更高。在M_(13)催化体系中,按间接加氢脱硫机理,反应可能依顺式加氢的方式进行;其中,C-S键断裂开环所需的活化能最高,是反应的限速步骤;按直接加氢脱硫机理,HS加氢所需活化能最高,是反应的限速步骤。同时该机理总体所需活化能较间接加氢脱硫机理更低,是更为合理的脱硫机理。噻吩加氢脱硫过程中,Au_(13)体系为放热反应,而Pt_(13)体系为吸热反应,并且Au_(13)体系加氢所需活化能更低;因此,Au_(13)更有利于噻吩加氢脱硫反应的进行。  相似文献   

10.
唐典勇  金诚  邹婷  黄雪娜 《化学学报》2009,67(14):1539-1546
在UBP86/LANL2DZ和UBP86/def2-TZVP水平下详细研究了AumNin (m+n≤6)团簇的几何结构和电子性质. 详细地分析了团簇的结构特征, 平均结合能, 垂直电离势, 垂直电子亲和能, 电荷转移以及成键特征. 所有混合团簇中, 镍原子趋于聚集到一起, 形成最多Ni—Ni键, 金原子分布在镍原子聚集体周围以形成最多Au—Ni键. Ni原子较少团簇的电子性质与纯金团簇类似, 呈现一定奇偶振荡. 混合团簇中存在镍到金原子间的电荷转移. Ni原子较少团簇中, 自旋电子主要定域在Ni原子上, Ni原子较多团簇中, Au原子明显受到自旋极化. 混合团簇的分波态密度表明, AuNi混合团簇对小分子的反应活性要高于纯金团簇.  相似文献   

11.
在TDDFT/Lanl2DZ+6-31G*水平下对(ZnS)6~12半导体团簇的三阶非线性光学性质进行了计算, 并用态求和(SOS)方法得到静态三阶宏观极化率χ(3)和0~2.5 eV范围内输入光子能量对三阶微观极化率γ的动态行为. 结果表明, (ZnS)6~12的χ(3)值比其它半导体团簇的略好. 且(ZnS)7和(ZnS)11分别在1.6和2.0 eV处出现了很大的γ值, 为-2.38×10-33和1.26×10-33 esu. 在此输入光子能量处激发, 它们将会产生很强的三阶非线性光学效应.  相似文献   

12.
在卡里普索(CALYPSO)结构预测的基础上,采用密度泛函理论(DFT)B3LYP方法,优化得到PdSi_n(n=1~15)团簇的基态结构,对其电子性质、红外光谱和拉曼光谱进行了讨论.结果表明,PdSi_n(n=1~15)团簇的基态构型随n值的增大由平面结构向立体结构演化;当n≤4时,PdSi_n团簇的红外与拉曼活性在450~500 cm-1范围内表现较好,当n≥5时,PdSi_n团簇的红外与拉曼活性在50~500 cm~(-1)范围内表现较好.  相似文献   

13.
吕孟娜  方志刚  秦渝  廖薇  陈林 《化学通报》2022,85(5):624-629
为探究团簇Ni4P催化析氢最强的结构,基于密度泛函理论,在B3LYP/Lan12dz水平下,对团簇Ni4P的初始构型进行计算和优化,得到5种优化构型。从热力学稳定性、前线轨道图和前线轨道能级差对团簇Ni4P的析氢性能分析发现,构型1(4)和1(2)的热力学稳定性较强;团簇Ni4P各优化构型均易吸附水中的氢原子,Ni原子为团簇Ni4P催化活性位点,且构型1(4)、1(2)和2(4)催化析氢的活性更强。(1(2))-H、(2(2))-H在电化学脱附法和化学重组法中均具有较强的催化活性。以上说明构型1(2)是团簇Ni4P催化析氢最强的结构。  相似文献   

14.
芳香性团簇的结构和光谱性质的理论研究   总被引:1,自引:0,他引:1  
李志伟  赵存元  陈六平 《化学进展》2006,18(12):1599-1607
对近年来芳香性团簇的理论研究进行了总结,主要集中在以铝原子为主的芳香性团簇、磷属元素团簇、硼原子系列团簇以及夹层型配合物和笼型分子团簇等方面,展示了该领域的一些重要研究进展和应用前景。  相似文献   

15.
(BN)_n团簇的结构和稳定性   总被引:1,自引:0,他引:1  
用HF方法、密度泛函理论的B3LYP以及微扰理论的MP2方法 ,在 6 3 1G(d)基组水平上 ,对 (BN) n(n =1~ 16)团簇的各种可能结构进行了优化 .讨论了环状与笼状稳定团簇的几何构型、自然键轨道 (NBO)、振动频率、结合能、核独立化学位移 (NICS)和能量二次差分 ,得到了 (BN) n(n =1~ 16)团簇结构的稳定性信息 .比较了HF ,B3LYP以及MP2三种理论方法对(BN) n 团簇的适应性所表现出的差异 .  相似文献   

16.
采用DFT方法研究了在团簇Au20的顶端位点和面心位点配位PH3分子时的几何结构、电子结构以及Au-P的成键机理和能量分析.在两种配位方式下,配体PH3对团簇的几何结构影响都表现为强烈的局域形变效应.不同的配位方式下PH3与团簇的轨道作用方式不同,所形成的团簇化合物电子组态不同.两种配位方式下Au-P成键能的区别主要是来自于配体与团簇之间的Pauli排斥的不同,在面心配位时配体与团簇之间更大的Pauli排斥作用导致了该配位方式的不稳定.  相似文献   

17.
利用密度泛函理论, 得到了ZrnB(n=1-13)团簇的基态结构, 计算并讨论了团簇能量的二阶差分和离解能. 结果表明, n=2, 5, 12时, 相应团簇较稳定, 特别是Zr5B团簇的稳定性最高. 同时分析了ZrnB团簇的电子性质及磁性, 结果显示能隙随n值的增大出现奇偶振荡趋势, 特别是Zr12B团簇的能隙只有0.015 eV, 表明该团簇已具有金属性. 电荷转移随n值增大, 整体呈增大趋势, 除了二聚体ZrB, 电荷由B原子转移到Zr原子. 利用Mulliken布居分析得到二聚体ZrB(5.000 μB)和团簇Zr4B(3.000 μB)的磁矩较大, ZrnB团簇中总磁矩主要来自Zr原子的4d轨道.  相似文献   

18.
利用密度泛函理论在B3LYP/6-311G*水平上对叠氮化合物(HCaN3)n (n=1~5)团簇各种可能构型进行了几何优化, 预测了各团簇的最稳定结构. 并对最稳定结构的成键特性、电荷分布、振动特性及稳定性进行理论研究. 结果表明, HCaN3团簇最稳定结构为折线型, (HCaN3)n (n=2~4)团簇最稳定结构为叠氮基端位N原子与Ca原子相互链接形成平面环状结构, (HCaN3)5团簇最稳定结构为立体钟形结构. 团簇最稳定结构中金属Ca原子均显示正电性, H原子均显示负电性, 叠氮基中间的N原子显示正电性, 叠氮基两端的N原子显示负电性, 且和Ca原子直接作用的N原子的负电性更强. Ca-N键和Ca-H键为典型的离子键, 叠氮基内N原子之间是共价键. 最稳定结构的IR光谱主要分为3个部分, 其最强振动峰均位于2193~2302 cm-1段, 振动模式为叠氮基中N-N键的反对称伸缩振动. 叠氮基在团簇和晶体中结构不变, 始终以直线型存在, 说明金属叠氮化合物团簇可以很好地模拟其晶体的局域成键和局域电荷转移等特性. 稳定性分析显示, (HCaN3)3团簇相对于其他团簇更稳定.  相似文献   

19.
采用密度泛函理论(Demity Function Theory)中的B3LYP方法,在Lanl2dz赝势基组水平上对(PtnMn)±,0(n=1~5)团簇的几何构型进行了全优化,并对基态的能级以及磁性进行了研究.结果表明:PtMn掺杂团簇的自旋多重度比较高,这种性质跟纯Mn团簇相似.并且发现一般情况下Mn原子参与成键数越多,结构越稳定,在成键数相同的情况下,成键的平均键长越短越稳定;其次(PtnMn)±,0团簇的所有稳定结构都表现为铁磁性耦合;掺杂一个Mn原子后的团簇磁性大大增强,磁矩主要来源于未满的d壳层电子,且Mn原子上的局域磁矩远大于Pt原子.随着Pt原子个数的增加,Mn原子的局域磁矩变化不大,但团簇的总磁矩渐渐增大.  相似文献   

20.
用杂化密度泛函B3LYP方法研究了(AB)8(AB=BN,AlP,GaAs,InSb)团簇环形结构的平衡几何构型、电子结构、振动特性以及极化率。计算结果表明,(AB)8团簇的双层环状结构中,每个A(B)原子都与3个B(A)原子成键,且Ⅴ族元素的原子比Ⅲ族元素的原子更接近团簇中心,(BN)8、(AlP)8、(GaAs)8、(InSb)8的平均极化率依次增大,IR和Raman谱峰发生红移。另外,讨论了热力学稳定性和动力学稳定性的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号