首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
制备了一种二维的[Zn(benzotriazole)2]n配位聚合物,并经过XRD、SEM及元素分析法的表征,将其用于富集萃取环境水样中的6种重质多环芳烃,该配合物对于含多苯环的化合物显示出较强的吸附力。实验中分别对填料用量、淋洗剂、洗脱剂的种类及用量、穿透体积等参数进行考察,并将其与同等上样量及加标量的C18固相萃取小柱进行对比,建立了水样中6种多环芳烃的气相色谱-质谱联用检测方法。结果表明,使用200mg[Zn(benzotriazole)2]n配合物作为固相萃取填料,以10%甲醇为淋洗剂,0.5mL丙酮和5mL二氯甲烷作为洗脱剂,在上样体积为200mL、流速为4mL/min的条件下,6种多环芳烃均具有较高的回收率。荧蒽(Flan)、苯并(b)荧蒽(BbF)、苯并(g,h,i)芘(BghiP)的质量浓度在20~1000μg/L范围内,苯并(k)荧蒽(BkF)、苯并(a)芘(BaP)、茚并(1,2,3-Cd)芘(InP)在10~500μg/L范围内与峰面积呈良好线性关系,相关系数为0.9968~0.9993。方法的检出限为0.45~10.7ng/L,加标回收率为77%~112%,相对标准偏差为3.8%~8.5%。结果表明,该方法具有成本低、灵敏度高等特点,能够满足实际水样中6种多环芳烃的测定要求。  相似文献   

2.
通过3-巯基丙基三甲氧基硅烷处理银层包裹的不锈钢纤维,得到Si-OH功能化的纤维,氧化石墨烯被层层键合到Si-OH功能化的纤维上,还原氧化石墨烯得到石墨烯层层键合的固相微萃取纤维。该方法制备的新型石墨烯层层键合的固相微萃取纤维具有制备简单,机械性能强,萃取涂层牢固,萃取能力强等优势。建立具有较宽线性范围(5~200μg/L)、较低检测限(0.007~0.09μg/L)的固相微萃取-气相色谱分析方法,用该方法测定河水和雨水中多环芳烃的含量。所制备的新型纤维重现性好、稳定性高、萃取能力强,可实现对多环芳烃的痕量检测。  相似文献   

3.
以单羟基七元瓜环(Q[7]-OH)和端羟基聚二甲基硅氧烷(OH-PDMS)为固定相,利用溶胶-凝胶方法制备了PDMS/Q[7]-OH的固相微萃取纤维(SPME fiber).建立了PDMS/Q[7]-OH SPME纤维-气相色谱(GC)/氢火焰离子化检测器(FID)对环境水样中5种苯酚类化合物同时检测的分析方法.实验结...  相似文献   

4.
陶敬奇  王超英  李碧芳  李攻科 《色谱》2003,21(6):599-602
建立了固相微萃取(SPME)-高效液相色谱(HPLC)联用同时测定环境水样中8种多环芳烃的分析方法。优化了萃取时间、萃取温度、解吸时间、解吸溶液、解吸模式等条件。该法对8种多环芳烃的检出限为0.002-0.180 μg/L,相对标准偏差(RSD, n=6)为4.4%-12.2%。用该法分析江水中的痕量多环芳烃,除苯并[b]荧蒽外,其他7种多环芳烃的回收率为91.1%-115.8%,RSD(n=3)为3.6%-18.8%。方法快速、灵敏、简单,适用于快速分析环境水样中的痕量多环芳烃。  相似文献   

5.
刘志超  胡霞林  刘景富 《色谱》2010,28(5):513-516
以涂有聚二甲基硅氧烷(PDMS)的石英光导纤维作为固相微萃取纤维,建立了一次性固相微萃取与高效液相色谱联用测定环境水样中的菲、荧蒽和屈3种多环芳烃(PAHs)的方法。实验考察了解吸时间、萃取时间、搅拌速度、盐效应以及样品溶液pH值对萃取效率的影响,优化得到的萃取和解吸条件为: 于60 mL样品溶液中放入两段萃取纤维(1.5 cm)和1.2 g氯化钠,在1200 r/min搅拌速度下萃取60 min,取出萃取纤维并转入120 μL甲醇中密封静置解吸24 h后,取20 μL解吸液进行液相色谱测定。该方法对于菲、荧蒽和屈的检出限分别为0.17、0.17和0.08 μg/L;精密度(以测定0.5 μg/L PAHs标准溶液6次的相对标准偏差计)小于8%;实际样品中3种PAHs的加标回收率为80.0%~107%。该方法快速简便,纤维一次性使用,克服了污染物在纤维上残留的问题。  相似文献   

6.
固相萃取-高效液相色谱法测定环境水样中多环芳烃   总被引:3,自引:0,他引:3  
栗旸  胡秋芬  刘世熙  尹家元 《分析化学》2002,30(12):1535-1535
1 引  言多环芳烃是一类重要的致癌物质 ,故对环境样品中痕量的多环芳烃分析具有重要意义。高效液相色谱 荧光检测器检测是测定多环芳烃最常用的方法。由于传统方法样品处理需用溶剂萃取 ,操作麻烦 ,污染大 ,引入误差因素多 ,故我们研究了用固相萃取预分离和富集 ,高效液相色谱程序波长荧光检测器检测的方法 ,并用二极管矩阵检测器 (PDA)辅助作峰识别和纯度分辨。该方法采用固相萃取小柱富集 ,具有富集倍数高 ,节省时间 ,环境污染小 ,不易乳化的优点 ,采用程序波长荧光检测器检测的同时又用PDA检测器作了辅助峰识别和纯度分辨 ,利…  相似文献   

7.
多环芳烃(PAHs)是持久性有机污染物中的一种,大部分具有较强的致癌、致畸和致突变性,对生态环境和人类健康易造成严重威胁。由于环境样品基质复杂且其中PAHs含量低,因此在仪器分析之前需要对环境样品进行必要的前处理。萃取材料的特性是决定大部分前处理技术萃取效率的关键。基于此,本文以低成本且富含较多官能团的吡咯(py)、2,3,3-三甲基吲哚(2,3,3-TMe@In)为单体,多孔氮化硼为掺杂物,采用电化学循环伏安法制备出多孔氮化硼掺杂聚吡咯-2,3,3-三甲基吲哚(Ppy/P2,3,3-TMe@In/BN)复合涂层,通过扫描电子显微镜、热稳定性分析、傅里叶红外光谱等手段对Ppy/P2,3,3-TMe@In/BN进行表征,结果表明:该涂层呈现出多孔、多褶皱的枝状结构,该结构有利于增加涂层的比表面积,从而实现对PAHs的大量富集;在320℃解吸温度下,涂层材料的色谱基线基本稳定,表明该涂层具有良好的热稳定性。将其修饰在不锈钢丝表面制成固相微萃取涂层,结合气相色谱-氢火焰离子化检测器,对影响萃取和分离萘(NAP)、苊(ANY)、芴(FLU)3种PAHs的条件进行优化,建立了用于以上3种PAHs...  相似文献   

8.
以竹炭为固相萃取吸附材料,考察了其对环境水样中16种多环芳烃的吸附富集能力,采用DB-35MS弹性石英毛细管色谱柱对16种多环芳烃进行分离,气相色谱-质谱联用法对多环芳烃进行定性及定量分析.结果表明,1 000 mg竹炭作为固相萃取吸附剂,10 mL二氯甲烷作为洗脱剂,上样速率5 mL/min,水样中甲醇体积分数为15%的条件下,16种多环芳烃有较好的回收率,竹炭固相萃取柱的穿透体积大于500 mL,通过实验比较竹炭的萃取回收率优于商品化的C18固相萃取柱.16种多环芳烃的质量浓度在10 ~500 ng/L范围内与峰面积的线性关系良好(苯并(k)荧蒽,苯并(a)芘,二苯并(a,h)蒽,苯并(g,h,i)苝为25 ~500 ng/L),相关系数为0.983 6 ~0.998 4.方法的检出限为0.6 ~8.0 ng/L,实际水样的加标回收率为67% ~113%,相对标准偏差为2.1% ~11.3%.通过对白沙河河水的分析表明,该方法能够满足实际水样的测定,竹炭可以作为固相萃取材料应用于水中16种多环芳烃的分析测定.  相似文献   

9.
采用固相微萃取与气相色谱串联质谱联用,建立了快捷测定大气细颗粒物(PM2.5)中16种优控多环芳烃的方法.目标物先用二氯甲烷富集浓缩,然后用100 μm聚二甲基硅氧烷萃取纤维,通过超声萃取方式,在60℃条件下,萃取30 min.在优化的在多反应监测模式下,方法回收率在56.8% ~ 106.0%之间,检出限为0.022~0.056 ng/m3.应用此方法检测了清华大学采样点采取的2013年1月1到15日北京PM2.5空气样品中的16种PAHs,实验结果表明,PAHs总质量浓度在290~1812 ng/m3之间,其中四环PAHs的总质量浓度最大(145 ~937 ng/m3),其次是五环PAHs(总质量浓度81.1~664.5 ng/m3),分子质量浓度较高的依次是荧蒽、芘、苯并(b)荧蒽、(蕴)、苯并(a)芘、苯并(k)荧蒽、苯并(a)蒽和菲,PAHs的污染主要来源于化石燃料燃烧和机动车排放.  相似文献   

10.
固相萃取搅拌棒萃取-气相色谱分析海水中的多环芳烃   总被引:21,自引:1,他引:21  
利用固相萃取搅拌棒(SBSE)萃取海水中的多环芳烃,然后用热解吸脱附-气相色谱分析。研究了萃取时间、添加NaCl浓度对萃取效率的影响。实验结果表明,SBSE方法对16种多环芳烃的萃取回收率分别在33.5%~122.4%之间;对标准样品的检出限为2.74-13.5ng/L;方法RSD为3.8%~13.1%。用此方法测定了大连海岸海水中的多环芳烃含量。  相似文献   

11.
对原有固相微萃取采样器进行改进,并将其用于珠江三角洲西部和东部2个水体基质较复杂的海湾(海陵湾和大亚湾)中16种优控多环芳烃(PAHs)的原位采样分析.研究表明,在分析的16种PAHs化合物中,2、3、4环PAHs均可检出,而5、6环PAHs均未检出.萘、芴、菲、荧蒽、芘5种检出化合物中,除萘外,均与文献中对珠江三角洲水体中PAHs的研究浓度无显著性差别.实验测得萘的质量浓度比传统方法的低,主要是因为固相微萃取水体原位采样技术无需有机溶剂参与样品富集过程,避免了有机溶剂对萘测定的干扰.  相似文献   

12.
采用溶胶—凝胶技术,加入自制的新化合物端羟基冠酸,成功地涂制了固相微萃取涂层;用半挥发性的有机污染物多环芳烃评价了涂层的基本性能,并对实际水样中的多环芳烃进行了分析。该方法的线性范围在0.1—10μg/L,检出限在0.001—0.03μg/L,8种多环芳烃化合物测定的相对标准偏差在2.05%一9.80%,回收率在85%以上。  相似文献   

13.
以烯丙基氧七元瓜环(Q7-OCH_2CH=CH_2)和端羟基聚二甲基硅氧烷(OH-PDMS)为固定相,γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)为偶联试剂,利用溶胶-凝胶方法和自由基交联技术首次制备了PDMS/Q7-OCH_2CH=CH_2涂层的固相微萃取纤维,建立了PDMS/Q7-OCH_2CH=CH_2SPME纤维-气相色谱(GC)/氢火焰离子化检测器(FID)对蔬菜中10种有机氯、有机磷农药残留同时检测的分析方法。结果显示,10种农药的检出限(LOD)为0.01~0.08 mg/kg,定量下限(LOQ)为0.03~0.26 mg/kg,富集倍数为14~67倍。低、中、高3个水平下的平均回收率(n=3)为61.3%~120%,日内及日间精密度(RSD)为4.6%~9.9%(n=5,50 mg/kg)。方法灵敏、简便,可满足蔬菜中有机氯、有机磷农残同时测定的要求。  相似文献   

14.
王翊如  王小如  FrankSCLee 《色谱》1999,17(5):424-426
采用固相微萃取 气相色谱/质谱联用技术分析了水中11种多环芳烃,并获得其平衡时的分配系数。当固相微萃取纤维上涂渍的固定液被视为一种有机溶剂时,根据萃取系统间线性的自由能关系,建立了聚二甲基硅氧烷 水分配系数(Ksw)与正辛醇 水分配系数(Kow)间的关系式,并将其应用于估算其它多环芳烃的未知的醇 水分配系数。所建立的方法简单、快速,与Leo碎片法相比,可以更精确地估算取代基位置不同的同分异构体的Kow。  相似文献   

15.
采用水热处理和溶胶-凝胶法在镍钛合金(NiTi)纤维表面组装了二氧化硅纳米片(SiO2NFs),成功制备了新型SiO2纤维涂层,并用苯基三氯硅烷进行了自组装表面修饰,得到了可用于固相微萃取(SPME)的NiO/TiO2@SiO2NFs-Ph纤维。将制备的SPME纤维与高效液相色谱联用,通过对典型芳香化合物的分析评价了所制备纤维的萃取性能。该纤维对多环芳烃(PAHs)具有较高的萃取率和良好的萃取选择性。实验优化了pH值、搅拌速率、萃取温度、萃取时间和离子强度对PAHs萃取率的影响。在优化条件下,5种PAHs在各自的范围内呈良好的线性关系,相关系数(r)大于0.999,检出限为0.013~0.108 μg/L。使用单根纤维对含有50 μg/L PAHs的加标水样进行萃取,其含量的日内及日间RSD分别为4.1%~5.9%和4.8%~6.8%。实际环境水样中5种PAHs在10 μg/L和30 μg/L加标水平下的加标回收率分别为90.8%~105.7%和93.6%~103.1%。该法制备的NiO/TiO2@SiO2NFs-Ph纤维稳定性高、制备重现性好,适用于环境水样中目标PAHs的富集和测定。  相似文献   

16.
建立了同时检测蔬菜中16种多环芳烃(PAHs)和11种卤代多环芳烃(X-PAHs)污染水平的分散固相萃取-气相色谱-串联质谱(GC-MS/MS)分析方法。样品中的多环芳烃和卤代多环芳烃经正己烷提取,N-丙基乙二胺吸附剂(PSA)和十八烷基键合硅胶吸附剂(C18)分散固相萃取净化剂净化,气相色谱-串联质谱方法测定,外标法定量。16种PAHs和11种X-PAHs在50,100和200μg/kg添加浓度下的回收率为74.7%~115.1%,相对标准偏差为1.6%~15.3%,方法检出限为0.03~7.4μg/kg。  相似文献   

17.
竹炭固相萃取-高效液相色谱法测定河水中多环芳烃   总被引:4,自引:0,他引:4  
建立了竹炭固相萃取-反相高效液相色谱法检测水中16种多环芳烃的方法。通过实验综合分析,选定正己烷为洗脱溶剂,洗脱溶剂体积为15mL,上样速率为5mL/min,上样体积为750mL。此萃取条件下的萃取回收率在50.3%~143.2%之间。经萃取后,方法的最低检出限范围为0.011~0.069μg/L,精密度在3.3%~11%之间。用该法测定河水中多环芳烃的含量,水样的加标回收率在50.3%~138.4%范围内。  相似文献   

18.
毛细管固相微萃取-液相色谱法测定水中的多环芳烃   总被引:8,自引:0,他引:8  
建立了一种新的水环境样品项处理方法。将水相中目标污染物萃取至毛细管固定相中,经微量有机溶剂解吸,直接在高效液相色谱上进样分析。该方法对蒽、荧蒽和1,2—苯并蒽3种多环芳烃的检测限分别为0.9μg/L,0.7μg/L和0.1μg/L。相对标准偏差5.1%-6.3%(n=7)。  相似文献   

19.
利用化学沉积法在高温退火后的TiO2纳米颗粒上原位组装硫化铜掺杂TiO2复合固相微萃取纤维(CuS@TiO2NPs/Ti)。优化了钛丝氧化时间、 TiO2退火温度、 CuS的循环沉积次数。利用场发射扫描电子显微镜和能量色散X-射线光谱仪对纤维表面进行形貌表征和成分分析。将制备的固相微萃取纤维与高效液相色谱联用(SPME-HPLC),测定水溶液中的典型芳香化合物。在最佳固相微萃取条件下,该纤维对多环芳烃(PAHs)萃取分析的回归方程线性范围为0.15~200μg/L,线性相关系数在0.9913~0.9985之间;检出限和定量限分别为0.02~0.04μg/L和0.07~0.13μg/L。单个纤维测定5次和3根纤维测定3次的相对标准偏差分别在3.2%~4.3%和4.6%~6.8%之间。利用该纤维开发的SPME-HPLC的方法,可应用于复杂环境水样中PAHs的灵敏测定。  相似文献   

20.
郭会华  陈刚  马玖彤  贾琼 《色谱》2017,35(3):318-324
利用1,3,6,8-四(4-醛基)芘和三聚氰胺为单体合成微孔有机聚合物(MOP),并将其固定在不锈钢丝上,制备成固相微萃取纤维涂层。将其用于顶空固相微萃取(HS-SPME),结合气相色谱-电子捕获检测手段,建立了对大米中有机氯农药的在线检测方法。实验考察了4种实验参数对富集能力的影响,得到了最优的实验条件:萃取温度80℃、萃取时间25 min、NaCl质量浓度200 g/L、解吸时间6 min。在此实验条件下,对有机氯农药的富集倍数达到115~318倍。方法在0.05~50μg/kg范围内具有良好的线性关系,检出限为2.4~11.3 ng/kg。同一纤维及不同纤维富集后测定结果的相对标准偏差范围分别为1.3%~13.1%和2.3%~13.6%。该方法简单、快速,可以实现对实际样品中有机氯农药的痕量分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号