首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
制备了核-壳结构的TiO2@Pt复合纳米颗粒,并修饰于恒电位沉积的普鲁士蓝-壳聚糖(PB-CS)杂化膜表面,以固定葡萄糖氧化酶。由于TiO2@Pt复合纳米颗粒的引入显著增大了传感器的导电性和酶的固载量,同时CS的掺杂,防止了PB的泄露,使得传感器对葡萄糖具有较好的催化作用。该传感器在1.2×10-6~1.1×10-3mol·L-1范围内,响应电流与葡萄糖浓度呈良好的线性,相关系数(r)为0.998 6,检出限(S/N=3)达到4.0×10-7mol·L-1,灵敏度为13.31 mA·mol·L-1·cm-2。对0.3 mmol·L-1的葡萄糖标准溶液连续检测5次,其相对标准偏差为3.8%。  相似文献   

2.
制备了硫化银-多壁碳纳米管(Ag2S-MWNTs)纳米复合材料,构置了Mb-Ag2S-MWNTs-CHIT/GCE,并研究了肌红蛋白(Mb)在该修饰电极上的直接电化学和电催化行为。采用扫描电镜和透射电镜表征了Ag2SMWNTs的形貌,利用循环伏安法对Mb的电化学行为进行研究。Ag2S能够均一、稳定的在MWNTs表面生长,所构置的修饰电极在PBS中出现一对峰形良好的、准可逆的氧化还原峰,并对过氧化氢(H2O2)表现出良好的电催化作用,测定H2O2的线性范围为1.0×10-6~2.5×10-4mol·L-1,检出限为3×10-7mol·L-1(S/N=3)。Ag2S-MWNTs纳米复合材料能显著提高氧化还原蛋白质(酶)的直接电子传递速率,所构置的修饰电极可为制备基于蛋白质(酶)的第三代电化学生物传感器提供一良好的研究平台。  相似文献   

3.
通过一定体积比的CdS和普鲁士蓝(PB)胶体纳米溶液的简单混合,制备了PB/CdS纳米复合物。在共反应剂存在条件下,PB纳米粒子含量较低时,在ITO电极上CdS纳晶的电致化学发光(ECL)强度可以增强3倍左右。PB纳米粒子含量较高时,CdS纳晶的ECL强度则显著降低。详细讨论了PB纳米粒子对CdS纳晶ECL影响的机理。PB纳米粒子对CdS纳晶的ECL增强可用于H2O2传感。该传感器对H2O2响应的线性范围为3.3×10-8~6.5×10-3 mol.L-1(R=0.999 2),检测限为12 nmol.L-1(S/N=3),传感器具有良好的稳定性和重现性。  相似文献   

4.
六氰合铁酸铜钴-多壁碳纳米管修饰电极研究   总被引:1,自引:0,他引:1  
采用电沉积方法制备六氰合铁酸铜钴-多壁碳纳米管复合修饰电极(CuCoHCF-MWCNTs/GCE).研究碳纳米管用量、电解液组成对该修饰电极性能的影响.结果表明,与单一的六氰合铁酸铜钴薄膜修饰电极相比,六氰合铁酸铜钴-多壁碳纳米管复合修饰电极具有更优良的电化学特性,以其催化氧化过氧化氢,峰电流与过氧化氢浓度在3.16×10-5~2.92×10-3mol·L-1范围内呈良好的线性关系,线性回归方程为ip(μA)=0.5529+1.1299C(×10-4mol·L-1),相关系数r=0.9966,检出限为1.75×10-5mol·L-1.  相似文献   

5.
以玻碳电极为基底,电聚合一层表面均匀的带正电性的聚天青Ⅰ膜,再通过静电作用吸附一层带负电性的具有大比表面积的纳米硫化镉来固定纳米金和辣根过氧化物酶(HRP)的复合物,制备出性能良好的过氧化氢生物传感器.采用循环伏安法(CV)和计时电流法对该生物传感器的性能进行了研究.试验表明:该方法不仅增加了酶的吸附量,还有效保持了酶的生物催化活性,此生物传感器对过氧化氢浓度在4.0×10-7~1.2×10-3mol·L-1范围内呈线性关系,检出限为1.4×10-7mol·L-1.  相似文献   

6.
采用聚氧乙烯月桂醚作为还原剂和稳定剂,还原硝酸银得到稳定的纳米银溶胶,然后将纳米银溶胶与血红蛋白(Hb)溶液混合得到Hb-Ag溶胶。将该Hb-Ag溶胶滴涂到玻碳电极表面,Hb在此修饰电极界面上可发生直接的电子传递,其氧化还原式电位为-0.303V。紫外-可见吸收光谱表明Hb在纳米银溶胶中保持自然构象不变。该Hb修饰电极对过氧化氢具有很好的催化活性,催化米氏常数(K_m~(app))为47μmol·L~(-1),表明了对过氧化氢良好的亲和性,在此基础上制备了一种过氧化氢传感器。在最佳条件下,该传感器对过氧化氢检测的线性范围为1.0×10-7~3.0×10-4 mol·L~(-1),检出限(3S/N)为2.0×10-8 mol·L~(-1)。  相似文献   

7.
建立了多壁碳纳米管(MWNTs)负载铂二二氧化钌纳米颗粒的液相化学还原法.以Nafion为固定剂,将Pt-RuO2/MWNTs复合材料修饰于玻碳电极的表面,制备了一种无酶型葡萄糖传感器.实验表明:复合材料修饰的电极对葡萄糖响应电流明显,并且受抗坏血酸(AA)、多巴胺(DA)和尿酸(UA)的干扰小.本实验采用安培法测定葡萄糖,线性范围为2 0×10 3~1.0×10-2 mol/L(R~0.9965);灵敏度为119.26 μA cm-2(mmol/L)-1;检出限为1.25×10 -5 mol/L(信噪比为3);响应时间为4.8 s.PtRuO2/MWNTs修饰电极可作为性能良好的无酶型葡萄糖传感器.  相似文献   

8.
以聚L-酪氨酸膜为载体,固载DNA和辣根过氧化物酶(HRP)制备过氧化氢生物传感器.该传感器对H2O2表现出良好的催化还原特性,具有灵敏度高,稳定性好且易于制作等特点.其线性响应范围为: 2.0×10-6~1.1×10-2 mol/L,检出限为8.0×10-7 mol/L (S/N=3).  相似文献   

9.
以聚L-酪氨酸膜为载体,固载DNA和辣根过氧化物酶(HRP)制备过氧化氢生物传感器.该传感器对H2O2表现出良好的催化还原特性,具有灵敏度高,稳定性好且易于制作等特点.其线性响应范围为:2.0×10-6~1.1×10-2 mol/L,检出限为8.0×10-7 mol/L (S/N=3).  相似文献   

10.
合成了牛血清白蛋白修饰的铜纳米簇(BSA-Cu NCs),研究发现在碱性环境中,BSA-Cu NCs对鲁米诺-过氧化氢体系的发光信号有很好的增强作用。对铜纳米簇催化鲁米诺-过氧化氢化学发光的机理进行了研究,并发现色氨酸对鲁米诺-过氧化氢-铜纳米簇化学发光体系信号具有增强作用,基于此,建立了化学发光测定色氨酸的含量的方法。该方法对色氨酸的检测限为6×10-8mol·L-1,线性范围为2.0×10-7~10-4mol·L-1。  相似文献   

11.
李利花  蔡自由 《广州化学》2015,40(1):48-52,59
采用水热合成法在多壁碳纳米管(MWNTs)上负载了Ru O2纳米颗粒,并以Nafion为固定剂将复合材料修饰于玻碳电极的表面,制备了一种新型无酶型葡萄糖传感器。利用扫描电镜(SEM)、X射线衍射(XRD)、电化学方法对复合材料进行表征,发现碳纳米管上的Ru O2为纳米级,分散均匀。该复合材料修饰的电极对葡萄糖响应电流明显,并且受抗坏血酸(AA)、多巴胺(DA)和尿酸(UA)的干扰小。采用安培法测定葡萄糖,其线性范围为1.0×10-5~1.2×10-2 mol/L(R2=0.998),灵敏度41.826μA cm-2(mmol/L)-1,检测限2.2×10-5 mol/L(信噪比为3),响应时间5.2 s,具有较好的稳定性。  相似文献   

12.
采用一锅法制备聚多巴胺-纳米金修饰玻碳电极(PDA-AuNPs/GCE),用扫描电子显微镜(SEM)对修饰电极进行表面形貌分析,并研究芦丁在该修饰电极上的电化学行为。实验表明,PDA-AuNPs/GCE对芦丁有较好的电催化氧化性能,芦丁的氧化峰电流与其浓度在1.0×10-6~1.0×10-4mol·L-1范围内成线性关系,检测下限为2.3×10-7mol·L-1(S/N=3)。该修饰电极可用于复方芦丁片中芦丁含量的检测,效果良好。  相似文献   

13.
普鲁士蓝-多壁碳纳米管复合材料修饰电极测定过氧化氢   总被引:3,自引:0,他引:3  
利用电化学方法在多壁碳纳米管(MWCNT)修饰的玻碳电极表面聚合一层普鲁士蓝(PB)(PB/MWCNT/GCE),制备了一种新型的过氧化氢(H2O2)传感器。研究了该传感器对H2O2的电催化作用。讨论了支持电解质种类、酸度、修饰层厚度、电位和扫速等对H2O2响应的影响。研究表明,该传感器在以1.0mol/L KCl为支持电解质的磷酸盐溶液(pH=2.0)中,对H2O2具有明显的催化效应,测定的线性范围变宽,在2.9×10-6~8.8×10-2mol/L范围内还原峰电流与H2O2的浓度呈良好的线性关系,相关系数为0.9949;检出限为1.4×10-6mol/L。该电极用于医用消毒水中H2O2的测定,结果令人满意。  相似文献   

14.
试验表明用超声原位沉淀法制备的α-FeOOH/GO纳米颗粒具有类似于辣根过氧化物酶的活性,且能催化活化过氧化氢而使底物N,N-二乙基-p-苯二胺氧化生成在550nm处有吸收峰的有色化合物。在反应条件下,过氧化氢的浓度在2.0×10-7~2.0×10-4 mol·L-1范围内与吸光度呈线性关系,检出限(3S/N)为1.0×10-7 mol·L-1。据此提出了用分光光度法间接、快速测定过氧化氢含量的方法。应用此方法测定了雨水和蜂蜜样品中过氧化氢的含量,并用标准加入法进行回收试验,测得回收率在92.3%~108%之间,测定值的相对标准偏差(n=5)均小于5%。  相似文献   

15.
在pH 4.8的0.1mol·L-1柠檬酸-0.2mol·L-1磷酸氢二钠缓冲介质中,于43℃水浴加热60min,牛血红蛋白对过氧化氢氧化邻苯二胺的反应有明显的催化作用。试验结果表明:过氧化氢浓度在8.24×10-6~2.31×10-4 mol·L-1范围内与相应吸光度的增加值ΔA呈线性关系,检出限(3s/k)为4.50×10-8 mol·L-1。据此提出了牛血红蛋白催化分光光度法测定过氧化氢的含量。采用此法测定消毒液和雨水中过氧化氢的含量,测定值的相对标准偏差(n=5)分别为0.081%和1.6%,消毒液中过氧化氢的测定值与滴定法测定结果相符。以上述2种试样作基体用标准加入法进行回收试验,测得回收率分别为99.3%和97.3%。  相似文献   

16.
用滴涂法将葡萄糖氧化酶(GOD)修饰到纳米金(Nano-Au)/壳聚糖(CS)/1-丁基-3-甲基咪唑六氟磷酸盐(BMIMPF6)复合材料修饰的金电极表面,制备了GODNano-Au/CS/BMIMPF6/Au生物传感器。采用循环伏安法(CV)和扫描电子显微镜(SEM)对该生物传感器进行表征,并对其制备条件、电化学性质进行了较为详细的研究。结果表明,复合材料不仅为GOD提供了良好的微环境,而且通过纳米尺寸效应和离子液体的高导电性,促进电子转移,使GOD具有更高的活性。该修饰电极可作为葡萄糖生物传感器,在最优条件下,葡萄糖浓度在1.0×10-4~1.0×10-6 mol·L-1范围内呈良好的线性关系,其线性相关系数r=0.9995,检出限为3.85×10-8 mol·L-1。  相似文献   

17.
将氧化石墨烯(GO)、多壁碳纳米管(MWNTs)和羧甲基壳聚糖(CMCS)超声混合后滴涂到玻碳电极(GCE)基体上得到修饰电极(MWNTs/GO/CMCS/GCE),采用循环伏安法(CV)考察NO2-和L-色氨酸(L-Trp)在修饰电极上的电化学行为。计算得MWNTs/GO/CMCS/GCE的有效面积为3.243 0×10-6cm2,电极膜表面积明显增加,加速了电子转移,有利于被测物质的吸附和富集。结果表明:NO2-(在pH 4.7磷酸盐缓冲溶液中)和L-Trp(在pH 4.0乙酸-乙酸钠缓冲溶液中)在该修饰电极上分别有明显的电催化氧化作用;两者的浓度依次在1.0×10-7~3.5×10-1 mol·L-1和1.0×10-8~2.7×10-1 mol·L-1内与其相应的氧化峰电流值之间呈线性关系,其检出限(3S/N)依次为1.2×10-8,5.0×10-8 mol·L-1。方法用于腐败生菜中NO2-含量和模拟样品中L-Trp含量的CV测定,所得测定结果分别与紫外-可见分光光度法和荧光光度法的测定结果相符。  相似文献   

18.
本文利用电解剥离法制得石墨烯/DNA复合材料,通过化学还原法将纳米金颗粒固定在石墨烯/DNA复合材料表面制得石墨烯/DNA/纳米金(Gr/DNA/GNPs)复合材料,最终构建了一种基于Gr/DNA/GNPs修饰电极的无酶葡萄糖生物传感器。通过循环伏安法考察了不同修饰电极在碱性葡萄糖溶液中的电化学行为,并探讨了溶液中OH-离子强度、扫描电位范围及Gr/DNA/GNPs修饰量对传感器响应特性的影响。在优化实验条件下,采用循环伏安法检测葡萄糖的线性范围为8.0×10-5~5.0×10-2mol·L-1,检出限为1.2×10-5mol·L-1(S/N=3)。对2.0×10-3mol·L-1的葡萄糖平行测定5次,其相对标准偏差为3.2%。实验结果表明该传感器具有较高的灵敏度、较好的重现性、稳定性及抗干扰能力。本方法可成功用于人血清样品中葡萄糖含量的测定,回收率为97.4%~102.8%。  相似文献   

19.
纳米氧化镍修饰电极电化学测定水中痕量砷(Ⅲ)   总被引:1,自引:0,他引:1  
采用循环伏安法在玻碳电极(GCE)表面电沉积了氧化镍纳米粒子,制备了纳米氧化镍粒子修饰玻碳电极(NiO-GCE).采用交流阻抗法和循环伏安法对固载纳米氧化镍的玻碳电极的结构和性能进行表征.研究发现:在pH 7.5的磷酸盐缓冲溶液中,在0.9 V电位处,NiO-GCE对砷(Ⅲ)具有良好的催化性能,氧化峰电流与砷(Ⅲ)的浓度在1.5×10-6~3.8×10-4mol·L-1范围内呈线性关系,检出限(3S/N)为5.0×10-7mol·L-1.  相似文献   

20.
基于2-氨基咪唑血红素模拟酶催化过氧化氢氧化对甲酚的反应建立了测定过氧化氢浓度的荧光光谱法。在优化的试验条件下,过氧化氢浓度在1.02×10-8~3.07×10-5 mol·L-1范围内与体系的荧光强度呈线性关系,方法的检出限(3S/N)为8.31×10-9 mol·L-1。本方法用于雨水中过氧化氢的测定,加标回收率在95.1%~99.0%之间,测定值的相对标准偏差(n=6)在1.3%~2.5%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号