首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monocyte chemoattractant protein-1 (MCP1) plays a key role in monocyte/macrophage infiltration to the sub-endothelial space of the blood vessel wall, which is a critical initial step in atherosclerosis. In this study, we examined the intracellular signaling pathway of IL-1β-induced MCP1 expression using various chemical inhibitors. The pretreatment of a phosphatidylcholine (PC)-specific PLC (PC-PLC) inhibitor (D609), PKC inhibitors, or an NF-κB inhibitor completely suppressed the IL-1β-induced MCP1 expression through blocking NF-κB translocation to the nucleus. Pretreatment with inhibitors of tyrosine kinase or PLD partially suppressed MCP1 expression and failed to block nuclear NF-κB translocation. These results suggest that IL-1β induces MCP1 expression through activation of NF-κB via the PC-PLC/PKC signaling pathway.  相似文献   

2.
In women with preeclampsia (PE), endothelial cell (EC) dysfunction can lead to altered secretion of paracrine factors that induce peripheral vasoconstriction and proteinuria. This study examined the hypothesis that PE sera may directly or indirectly, through human umbilical vein ECs (HUVECs), stimulate phospholipase C-γ1-1,4,5-trisphosphate (PLC-γ1-IP3) signaling, thereby increasing protein kinase C-α (PKC-α) activity, collagen I expression and intracellular Ca2+ concentrations ([Ca2+]i) in human umbilical artery smooth muscle cells (HUASMCs). HUASMCs and HUVECs were cocultured with normal or PE sera before PLC-γ1 silencing. Increased PLC-γ1 and IP3 receptor (IP3R) phosphorylation was observed in cocultured HUASMCs stimulated with PE sera (P<0.05). In addition, PE serum significantly increased HUASMC viability and reduced their apoptosis (P<0.05); these effects were abrogated with PLC-γ1 silencing. Compared with normal sera, PE sera increased [Ca2+]i in cocultured HUASMCs (P<0.05), which was inhibited by PLC-γ1 and IP3R silencing. Finally, PE sera-induced PKC-α activity and collagen I expression was inhibited by PLC-γ1 small interfering RNA (siRNA) (P<0.05). These results suggest that vasoactive substances in the PE serum may induce deposition in the extracellular matrix through the activation of PLC-γ1, which may in turn result in thickening and hardening of the placental vascular wall, placental blood supply shortage, fetal hypoxia–ischemia and intrauterine growth retardation or intrauterine fetal death. PE sera increased [Ca2+]i and induced PKC-α activation and collagen I expression in cocultured HUASMCs via the PLC-γ1 pathway.  相似文献   

3.
There is considerable interest in the identification of natural agents capable of affording protection to skin from the adverse effects of solar ultraviolet B (UVB) radiation. Pomegranate (Punica granatum L.) fruit possesses as strong antioxidant, anti-inflammatory and antiproliferative properties. Recently, we have shown that oral feeding of pomegranate fruit extract (PFE) to mice afforded substantial protection from the adverse effects of single UVB radiation via modulation in early biomarkers of photocarcinogenesis. This study was designed to investigate the photochemopreventive effects of PFE (0.2%, wt/vol) after multiple UVB irradiations (180 mJ cm(-2), on alternative day, for a total of seven treatments) to the skin of SKH-1 hairless mice. Oral feeding of PFE to SKH-1 mice inhibited UVB-induced epidermal hyperplasia, infiltration of leukocytes, protein oxidation and lipid peroxidation. Immunoblot analysis demonstrated that oral feeding of PFE to mice inhibited UVB-induced (1) nuclear translocation and phosphorylation of nuclear factor kappa B/p65, (2) phosphorylation and degradation of IκBα, (3) activation of IKKα/ΙΚΚβ and (4) phosphorylation of mitogen-activated protein kinase proteins and c-Jun. PFE consumption also inhibited UVB-induced protein expression of (1) COX-2 and iNOS, (2) PCNA and cyclin D1 and (3) matrix metalloproteinases-2,-3 and -9 in mouse skin. Taken together, these data show that PFE consumption afforded protection to mouse skin against the adverse effects of UVB radiation by modulating UVB-induced signaling pathways.  相似文献   

4.
B cells play an important role in the pathogenesis of rheumatoid arthritis (RA). High levels of B cell activating factor (BAFF) are detected in autoimmune diseases. BAFF and BAFF receptor (BAFF-R) are expressed in B and T cells of RA synovium. The study was undertaken to identify the NF-ΚB signal pathway involved in the induction of BAFF-R in human B cells. Immunohistochemical staining of NF-ΚB p65, NF-ΚB p50, BAFF, and BAFF-R was performed on sections of synovium from severe and mild RA and osteoarthritis (OA) patients. Peripheral blood mononuclear cells (PBMCs) were isolated from control and RA patients and B cells were isolated from controls. BAFF-R was analyzed by flow cytometry, realtime PCR and confocal staining after treatment with NF-ΚB inhibitors. NF-ΚB p65, NF-ΚB p50, BAFF, and BAFF-R were highly expressed in severe RA synovium relative to mild RA synovium or OA synovium. BAFF-R expression was reduced by NF-ΚB inhibitors in PBMCs and B cells from normal controls. We also showed reduction in expression of BAFF-R via inhibition of the NF-ΚB pathway in PBMCs of RA patients. BAFF/BAFF-R signaling is an important mechanism of pathogenesis in RA and that BAFF-R reduction by NF-ΚB blocking therapy is another choice for controlling B cells in autoimmune diseases such as RA.  相似文献   

5.
6.
7.
8.
Applied Biochemistry and Biotechnology - Microglia, resident macrophages of the central nervous system (CNS), is responsible for immune responses and homeostasis of the CNS. Microglia plays a...  相似文献   

9.
We have developed a separation technique for DNA-protein complex based on electrophoretic mobility shift assay (EMSA) by microchip electrophoresis, which we call microchip electrophoretic mobility shift assay (μEMSA). To evaluate the μEMSA, we employed recombinant human nuclear factor-κB (rhNF-κB) and its consensus double-stranded oligonucleotide (dsOligo) fluorescently labeled with Cy5. We carried out the electrophoretic separation of the consensus dsOligo-rhNF-κB complex and the unbound dsOligo in methylcellulose solution and confirmed rapid (~200 s) and reliable identification and semi-quantitation of the specific interaction between dsOligo and rhNF-κB. The binding specificity of rhNF-κB was confirmed by introducing non-fluorescently labeled consensus oligonucleotide as a competitor. The progression of the binding reaction under various incubation times was monitored, and it was found that the dsOligo and rhNF-κB complex formation reached equilibrium (ca. 90% of the dsOligo was bound to rhNF-κB) after 5 min. Furthermore, without any purification process, even crude NF-κB in nuclear extracts from HeLa cells was specifically detected within 120 s by the μEMSA.  相似文献   

10.
Pentraxin 3 (PTX3) was identified as a marker of the inflammatory response and overexpressed in various tissues and cells related to cardiovascular disease. Honokiol, an active component isolated from the Chinese medicinal herb Magnolia officinalis, was shown to have a variety of pharmacological activities. In the present study, we aimed to investigate the effects of honokiol on palmitic acid (PA)-induced dysfunction of human umbilical vein endothelial cells (HUVECs) and to elucidate potential regulatory mechanisms in this atherosclerotic cell model. Our results showed that PA significantly accelerated the expression of PTX3 in HUVECs through the IκB kinase (IKK)/IκB/nuclear factor-κB (NF-κB) pathway, reduced cell viability, induced cell apoptosis and triggered the inflammatory response. Knockdown of PTX3 supported cell growth and prevented apoptosis by blocking PA-inducted nitric oxide (NO) overproduction. Honokiol significantly suppressed the overexpression of PTX3 in PA-inducted HUVECs by inhibiting IκB phosphorylation and the expression of two NF-κB subunits (p50 and p65) in the IKK/IκB/NF-κB signaling pathway. Furthermore, honokiol reduced endothelial cell injury and apoptosis by regulating the expression of inducible NO synthase and endothelial NO synthase, as well as the generation of NO. Honokiol showed an anti-inflammatory effect in PA-inducted HUVECs by significantly inhibiting the generation of interleukin-6 (IL-6), IL-8 and monocyte chemoattractant protein-1. In summary, honokiol repaired endothelial dysfunction by suppressing PTX3 overexpression in an atherosclerotic cell model. PTX3 may be a potential therapeutic target for atherosclerosis.  相似文献   

11.
《Chemistry & biology》2014,21(8):955-966
  1. Download : Download high-res image (377KB)
  2. Download : Download full-size image
  相似文献   

12.
It has been indicated that amyloid β (Aβ) plaques can be accumulated within the basement membranes of cerebrovascular smooth muscle cells (CVSMCs) and stimulate the induction of cerebral amyloid angiopathy (CAA). However, the exact mechanism(s) of which small molecules including callistephin mitigate the formation of Aβ aggregation and associated CAA is not well-understood. Therefore, in the present study, Aβ1–42 samples in the aggregation buffer were co-incubated for 36 h without or with of callistephin and the protein aggregation features along with the associated cytotoxicity against CVSMCs as the core components of cerebral arterial wall were explored by different biochemical and cellular methods. Fluorescence (ThT, Nile red) and CD techniques indicated the inhibition of Aβ1–42 fibrillization in the presence of callistephin. Cellular assays revealed that cytotoxicity of Aβ1–42 samples aged in the aggregation buffer with callistephin was much less against CVSMCs than Aβ1–42 amyloid alone through regulation of membrane leakage and downregulation of TNF-α and IL-6 at protein level. In conclusion, these data may provide useful information about the possible mechanisms by which callistephin can show its protective effect against CAA.  相似文献   

13.
Psoriasis is a chronic inflammatory skin disorder characterized by rapid proliferation of keratinocytes and incomplete keratinization. Discovery of safer and more effective anti-psoriatic drugs remains an area of active research at the present time. Using a HaCaT keratinocyte cell line as an in vitro model, we had previously found that ethanolic extracts from three Thai medicinal herbs, namely Alpinia galanga, Curcuma longa and Annona squamosa, possessed anti-psoriatic activity. In the current study, we aimed at investigating if these Thai medicinal herb extracts played a molecular role in suppressing psoriasis via regulation of NF-κB signaling biomarkers. Using semi-quantitative RT-PCR and report gene assays, we analyzed the effects of these potential herbal extracts on 10 different genes of the NF-κB signaling network in HaCaT cells. In accordance with our hypothesis, we found that the extract derived from Alpinia galanga significantly increased the expression of TNFAIP3 and significantly reduced the expression of CSF-1 and NF-kB2. Curcuma longa extract significantly decreased the expression of CSF-1, IL-8, NF-kB2, NF-kB1 and RelA, while Annona squamosa extract significantly lowered the expression of CD40 and NF-kB1. Therefore, this in vitro study suggested that these herbal extracts capable of functioning against psoriasis, might exert their activity by controlling the expression of NF-κB signaling biomarkers.  相似文献   

14.
We investigated the effects of Astragalus polysaccharide (APS) on palmitate-induced insulin resistance in C2C12 skeletal muscle myotubes. Palmitate-reduced glucose uptake was restored by APS. APS prevented palmitate-induced C2C12 myotubes from impaired insulin signaling by inhibiting Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1) and increasing Ser473 phosphorylation of Akt. Moreover, the increases in protein-tyrosine phosphatase-1B (PTP1B) protein level and NF-κB activation associated with palmitate treatment were also prevented by APS. However the treatment with APS didn't change AMP-activated protein kinase (AMPK) activation in palmitate-induced myotubes. The results of the present study suggest that Astragalus polysaccharide inhibits palmitate-induced insulin resistance in C2C12 myotubes by inhibiting expression of PTP1B and regulating NF-κB but not AMPK pathway.  相似文献   

15.
16.
14-α-Lipoic acid-3,19-dihydroxyandrographolide (AL-1, 2) is an analogue of andrographolide (Andro, 1) coupled to α-lipoic acid (LA, 4). AL-1 was at least 10-fold more potent than the natural parent compound Andro in inhibiting nuclear factor (NF)-κB activation in RIN-m cells. In the present study, glutathione (GSH, 3) was used as a simple chemical model molecule of NF-κB with cysteine 62. The characteristics of the reaction between AL-1 or Andro and GSH were investigated to trace some possible elucidation for the inhibitive mechanism and stronger inhibition of AL-1 to NF-κB activation. The results showed that the main reaction products of AL-1 and Andro were identical, sulfhydryl adduct and amino adduct. AL-1 reacted much faster than Andro with GSH. The product yield of AL-1 was much higher than that of Andro. It was speculated that AL-1 might inhibit NF-κB by the same mechanism as Andro. And the faster reaction rate and higher yield may account for the stronger NF-κB inhibition of AL-1 when compared with Andro.  相似文献   

17.
Xanthatin, a natural sesquiterpene lactone, has significant antitumor activity against a variety of cancer cells, yet little is known about its anticancer mechanism. In this study, we demonstrated that xanthatin had obvious dose-/time-dependent cytotoxicity against the human non-small-cell lung cancer (NSCLC) cell line A549. Flow cytometry analysis showed xanthatin induced cell cycle arrest at G2/M phase. Xanthatin also had pro-apoptotic effects on A549 cells as evidenced by Hoechst 33258 staining and annexin V-FITC staining. Mechanistic data revealed that xanthatin downregulated Chk1, Chk2, and phosphorylation of CDC2, which contributed to the cell cycle arrest. Xathatin also increased total p53 protein levels, decreased Bcl-2/Bax ratio and expression of the downstream factors procaspase-9 and procaspase-3, which triggered the intrinsic apoptosis pathway. Furthermore, xanthatin blocked phosphorylation of NF-κB (p65) and IκBa, which might also contribute to its pro-apoptotic effects on A549 cells. Xanthatin also inhibited TNFa induced NF-κB (p65) translocation. We conclude that xanthatin displays significant antitumor effects through cell cycle arrest and apoptosis induction in A549 cells. These effects were associated with intrinsic apoptosis pathway and disrupted NF-κB signaling. These results suggested that xanthatin may have therapeutic potential against NSCLC.  相似文献   

18.
Type 1 diabetes mellitus is caused by the autoimmune destruction of β cells within the islets. In recent years, innate immunity has been proposed to play a key role in this process. High-mobility group box 1 (HMGB1), an inflammatory trigger in a number of autoimmune diseases, activates proinflammatory responses following its release from necrotic cells. Our aim was to determine the significance of HMGB1 in the natural history of diabetes in non-obese diabetic (NOD) mice. We observed that the rate of HMGB1 expression in the cytoplasm of islets was much greater in diabetic mice compared with non-diabetic mice. The majority of cells positively stained for toll-like receptor 4 (TLR4) were β cells; few α cells were stained for TLR4. Thus, we examined the effects of anti-TLR4 antibodies on HMGB1 cell surface binding, which confirmed that HMGB1 interacts with TLR4 in isolated islets. Expression changes in HMGB1 and TLR4 were detected throughout the course of diabetes. Our findings indicate that TLR4 is the main receptor on β cells and that HMGB1 may signal via TLR4 to selectively damage β cells rather than α cells during the development of type 1 diabetes mellitus.  相似文献   

19.
Overexpression of HER2 correlates with more aggressive tumors and increased resistance to cancer chemotherapy. However, a functional comparison between the HER2(high)/HER3 and the HER2(low)/HER3 dimers on tumor metastasis has not been conducted. Herein we examined the regulation mechanism of heregulin- β1 (HRG)-induced MMP-1 and -9 expression in breast cancer cell lines. Our results showed that the basal levels of MMP-1 and -9 mRNA and protein expression were increased by HRG treatment. In addition, HRG-induced MMP-1 and -9 expression was significantly decreased by MEK1/2 inhibitor, U0126 but not by phosphatidylinositol 3-kinase (PI-3K) inhibitor, LY294002. To confirm the role of MEK/ERK pathway on HRG-induced MMP-1 and -9 expression, MCF7 cells were transfected with constitutively active adenoviral- MEK (CA-MEK). The level of MMP-1 and -9 expressions was increased by CA-MEK. MMP-1 and -9 mRNA and protein expressions in response to HRG were higher in HER2 overexpressed cells than in vector alone. The phosphorylation of HER2, HER3, ERK, Akt, and JNK were also significantly increased in HER2 overexpressed MCF7 cells compared with vector alone. HRG-induced MMP-1 and -9 expressions were significantly decreased by lapatinib, which inhibits HER1 and HER2 activity, in both vector alone and HER2 overexpressed MCF7 cells. Finally, HRG-induced MMP-1 and MMP-9 expression was decreased by HER3 siRNA overexpression. Taken together, we suggested that HRG-induced MMP-1 and MMP-9 expression is mediated through HER3 dependent pathway and highly expressed HER2 may be associated with more aggressive metastasis than the low expressed HER2 in breast cancer cells.  相似文献   

20.
Microglial cells are the resident innate immune cells that sense pathogens and tissue injury in the central nervous system (CNS). Microglial activation is critical for neuroinflammatory responses. The synthetic compound 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139) is a novel chalcone-derived compound. In this study, we investigated the effects of DK-139 on Toll-like receptor 4 (TLR4)-mediated inflammatory responses in BV2 microglial cells. DK-139 inhibited lipopolysaccharide (LPS)-induced TLR4 activity, as determined using a cell-based assay. DK-139 blocked LPS-induced phosphorylation of IκB and p65/RelA NF-κB, resulting in inhibition of the nuclear translocation and trans-acting activity of NF-κB in BV2 microglial cells. We also found that DK-139 reduced the expression of NF-κB target genes, such as those for COX-2, iNOS, and IL-1β, in LPS-stimulated BV2 microglial cells. Interestingly, DK-139 blocked LPS-induced Akt phosphorylation. Inhibition of Akt abrogated LPS-induced phosphorylation of p65/RelA, while overexpression of dominant- active p110CAAX enhanced p65/RelA phosphorylation as well as iNOS and COX2 expression. These results suggest that DK-139 exerts an anti-inflammatory effect on microglial cells by inhibiting the Akt/IκB kinase (IKK)/NF-κB signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号