首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct cellular imaging of the localization and dynamics of biomolecules helps to understand their function and reveals novel mechanisms at the single‐cell resolution. In contrast to routine fluorescent‐protein‐based protein imaging, technology for RNA imaging remains less well explored because of the lack of enabling technology. Herein, we report the development of an aptamer‐initiated fluorescence complementation (AiFC) method for RNA imaging by engineering a green fluorescence protein (GFP)‐mimicking turn‐on RNA aptamer, Broccoli, into two split fragments that could tandemly bind to target mRNA. When genetically encoded in cells, endogenous mRNA molecules recruited Split‐Broccoli and brought the two fragments into spatial proximity, which formed a fluorophore‐binding site in situ and turned on fluorescence. Significantly, we demonstrated the use of AiFC for high‐contrast and real‐time imaging of endogenous RNA molecules in living mammalian cells. We envision wide application and practical utility of this enabling technology to in vivo single‐cell visualization and mechanistic analysis of macromolecular interactions.  相似文献   

2.
Real-time visualization of individual viral mRNA translation activities in live cells is essential to obtain critical details of viral mRNA dynamics and to detect its transient responses to environmental stress. Fluorogenic RNA aptamers are powerful tools for real-time imaging of mRNA in live cells, but monitoring the translation activity of individual mRNAs remains a challenge due to their intrinsic photophysical properties. Here, we develop a genetically encoded turn-on 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI)-binding RNA nanozipper with superior brightness and high photostability by in situ self-assembly of multiple nanozippers along single mRNAs. The nanozipper enables real-time imaging of the mobility and dynamic translation of individual viral mRNAs in live cells, providing information on the spatial dynamics and translational elongation rate of viral mRNAs.  相似文献   

3.
Because of the absence of methods for tracking RNA G‐quadruplex dynamics, especially the folding and unfolding of this attractive structure in live cells, understanding of the biological roles of RNA G‐quadruplexes is so far limited. Herein, we report a new red‐emitting fluorescent probe, QUMA‐1 , for the selective, continuous, and real‐time visualization of RNA G‐quadruplexes in live cells. The applications of QUMA‐1 in several previously intractable applications, including live‐cell imaging of the dynamic folding, unfolding, and movement of RNA G‐quadruplexes and the visualization of the unwinding of RNA G‐quadruplexes by RNA helicase have been demonstrated. Notably, our real‐time results revealed the complexity of the dynamics of RNA G‐quadruplexes in live cells. We anticipate that the further application of QUMA‐1 in combination with appropriate biological and imaging methods to explore the dynamics of RNA G‐quadruplexes will uncover more information about the biological roles of RNA G‐quadruplexes.  相似文献   

4.
RNA aptamers form compact tertiary structures and bind their ligands in specific binding sites. Fluorescence‐based strategies reveal information on structure and dynamics of RNA aptamers. Herein, we report the incorporation of the universal emissive nucleobase analog 4‐cyanoindole into the fluorogenic RNA aptamer Chili, and its application as a donor for supramolecular FRET to the bound ligands DMHBI+ or DMHBO+. The photophysical properties of the new nucleobase–ligand‐FRET pair revealed structural restraints for the overall RNA aptamer organization and identified nucleotide positions suitable for FRET‐based readout of ligand binding. This strategy is generally suitable for binding‐site mapping and may also be applied for responsive aptamer devices.  相似文献   

5.
While dynamic nuclear polarization (DNP) under magic‐angle spinning (MAS) is generally a powerful method capable of greatly enhancing the sensitivity of solid‐state NMR spectroscopy, hyperpolarization also gives rise to peculiar spin dynamics. Here, we elucidate how specific cross‐relaxation enhancement by active motions under DNP (SCREAM‐DNP) can be utilized to selectively obtain MAS‐NMR spectra of an RNA aptamer in a tightly bound complex with a methyl‐bearing ligand (tetracycline) due to the effective CH3‐reorientation at an optimized sample temperature of approximately 160 K. SCREAM‐DNP can spectrally isolate the complex from non‐bound species in an RNA mixture. This selectivity allows for a competition assay between the aptamer and a mutant with compromised binding affinity. Variations in molecular structure and methyl dynamics, as observed by SCREAM‐DNP, between free tetracycline and RNA‐bound tetracycline are discussed.  相似文献   

6.
The 5′‐cap is a hallmark of eukaryotic mRNAs and plays fundamental roles in RNA metabolism, ranging from quality control to export and translation. Modifying the 5′‐cap may thus enable modulation of the underlying processes and investigation or tuning of several biological functions. A straightforward approach is presented for the efficient production of a range of N7‐modified caps based on the highly promiscuous methyltransferase Ecm1. We show that these, as well as N2‐modified 5′‐caps, can be used to tune translation of the respective mRNAs both in vitro and in cells. Appropriate modifications allow subsequent bioorthogonal chemistry, as demonstrated by intracellular live‐cell labeling of a target mRNA. The efficient and versatile N7 manipulation of the mRNA cap makes mRNAs amenable to both modulation of their biological function and intracellular labeling, and represents a valuable addition to the chemical biology toolbox.  相似文献   

7.
G‐quadruplex (G4) structures are of general importance in chemistry and biology, such as in biosensing, gene regulation, and cancers. Although a large repertoire of G4‐binding tools has been developed, no aptamer has been developed to interact with G4. Moreover, the G4 selectivity of current toolkits is very limited. Herein, we report the first l ‐RNA aptamer that targets a d ‐RNA G‐quadruplex (rG4). Using TERRA rG4 as an example, our results reveal that this l ‐RNA aptamer, Ap3‐7, folds into a unique secondary structure, exhibits high G4 selectivity and effectively interferes with TERRA‐rG4–RHAU53 binding. Our approach and findings open a new door in further developing G4‐specific tools for diverse applications.  相似文献   

8.
RNA imaging is of great importance for understanding its complex spatiotemporal dynamics and cellular functions. Considerable effort has been devoted to the development of small-molecule fluorescent probes for RNA imaging. However, most of the reported studies have mainly focused on improving the photostability, permeability, long emission wavelength, and compatibility with live-cell imaging of RNA probes. Less attention has been paid to the selectivity and detection limit of this class of probes. Highly selective and sensitive RNA probes are still rarely available. In this study, a new set of styryl probes were designed and synthesized, with the aim of upgrading the detection limit and maintaining the selectivity of a lead probe QUID−1 for RNA. Among these newly synthesized compounds, QUID−2 was the most promising candidate. The limit of detection (LOD) value of QUID−2 for the RNA was up to 1.8 ng/mL in solution. This property was significantly improved in comparison with that of QUID−1. Further spectroscopy and cell imaging studies demonstrated the advantages of QUID−2 over a commercially available RNA staining probe, SYTO RNASelect, for highly selective and sensitive RNA imaging. In addition, QUID−2 exhibited excellent photostability and low cytotoxicity. Using QUID−2, the global dynamics of RNA were revealed in live cells. More importantly, QUID−2 was found to be potentially applicable for detecting RNA granules in live cells. Collectively, our work provides an ideal probe for RNA imaging. We anticipate that this powerful tool may create new opportunities to investigate the underlying roles of RNA and RNA granules in live cells.  相似文献   

9.
10.
Genetically encoded RNA devices have emerged for various cellular applications in imaging and biosensing, but their functions as precise regulators in living systems are still limited. Inspired by protein photosensitizers, we propose here a genetically encoded RNA aptamer based photosensitizer (GRAP). Upon illumination, the RNA photosensitizer can controllably generate reactive oxygen species for targeted cell regulation. The GRAP system can be selectively activated by endogenous stimuli and light of different wavelengths. Compared with their protein analogues, GRAP is highly programmable and exhibits reduced off-target effects. These results indicate that GRAP enables efficient noninvasive target cell ablation with high temporal and spatial precision. This new RNA regulator system will be widely used for optogenetics, targeted cell ablation, subcellular manipulation, and imaging.  相似文献   

11.
12.
Although RNA aptamers can show comparable or better specificity and affinity to antibodies and have the advantage of being able to access different live cell compartments, they are often much less stable in vivo. We report here the first aptamer that binds human retinoblastoma protein (RB) and is stable in live cells. RB is both a key protein in cell cycle control and also a tumour suppressor. The aptamer was selected from an RNA library against a unique 12-residue helical peptide derived from RB rather than the whole protein molecule. It binds RB with high affinity (Kd = 5.1 ± 0.1 nM) and is a putative RNA G-quadruplex structure formed by an 18-nucleotide sequence (18E16 - GGA GGG UGG AGG GAA GGG), which may account for its high stability. Confocal fluorescence microscopy of live cells transfected with the aptamer shows it is stable intracellularly and efficient in entering the nucleus where an analogous antibody was inaccessible. The findings demonstrate this aptamer is an advanced probe for RB in live cell applications.

An RNA G-quadruplex aptamer, specific for the human retinoblastoma protein (RB) and highly stable inside cells, is selected and its application to live cell probing of the protein illustrated.  相似文献   

13.
The system of clustered regularly interspaced short palindromic repeats(CRISPR)and CRISPR-associated endonucleases(Cas)have been widely used in gene editing,disease treatment,molecular diagnosis and chromosome imaging.On account of the programmable target recognition of CRISPR-Cas system and the specific targeting function toward RNA of type Ⅵ class Ⅱ Cas proteins,CRISPR-Cas system has been deployed as RNA recognition and detection tools,exhibiting promising application potentials in the field of RNA detection and imaging.In this review,we summarize the latest research progresses as well as development prospects of CRISPR-Cas system in RNA diagnosis and live cell RNA imaging.  相似文献   

14.
15.
16.
Integration of imaging data across different molecular target types can provide in‐depth insight into cell physiology and pathology, but remains challenging owing to poor compatibility between target‐type‐specific labeling methods. We show that cross‐platform imaging analysis can be readily achieved through DNA encoding of molecular targets, which translates the molecular identity of various target types into a uniform in situ array of ssDNA tags for subsequent labeling with complementary imaging probes. The concept was demonstrated through multiplexed imaging of mRNAs and their corresponding proteins with multicolor quantum dots. The results reveal heterogeneity of cell transfection with siRNA and outline disparity in RNA interference (RNAi) kinetics at the level of both the mRNA and the encoded protein.  相似文献   

17.
18.
The regulation of gene expression is crucial in diverse areas of biological science, engineering, and medicine. A genetically encoded system based on the RNA binding domain of the Pumilio and FBF (PUF) proteins was developed for the bidirectional regulation (i.e., either upregulation or downregulation) of the translation of a target mRNA. PUF domains serve as designable scaffolds for the recognition of specific RNA elements and the specificity can be easily altered to target any 8‐nucleotide RNA sequence. The expression of a reporter could be varied by over 17‐fold when using PUF‐based activators and repressors. The specificity of the method was established by using wild‐type and mutant PUF domains. Furthermore, this method could be used to activate the translation of target mRNA downstream of PUF binding sites in a light‐dependent manner. Such specific bidirectional control of mRNA translation could be particularly useful in the fields of synthetic biology, developmental biology, and metabolic engineering.  相似文献   

19.
An aptamer specifically binding the interleukin‐6 receptor and intrinsically comprising multiple units of the nucleoside analogue 5‐fluoro‐2′‐deoxyuridine can exert a cytostatic effect direcly on certain cells presenting the receptor. Thus the modified aptamer fulfils the requirements for active drug targeting in an unprecedented manner. It can easily be synthesized in a single enzymatic step and it binds to a cell surface receptor that is conveyed into the lysosome. Upon degradation of the aptamer by intracellular nucleases the active drug is released within the targeted cells exclusively. In this way the aptamer acts as a prodrug meeting two major prerequisites of a drug delivery system: specific cell targeting and the controlled release of the drug triggered by an endogenous stimulus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号