首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we demonstrate the structural evolution of a two-dimensional (2D) supramolecular assembly system, which is steered by the thermally activated deprotonation of the primary organic building blocks on a Ag(111) surface. Scanning tunneling microscopy revealed that a variety of structures, featuring distinct structural, chiral, and intermolecular bonding characters, emerged with the gradual thermal treatments. According to our structural analysis, in combination with density function theory calculations, the structural evolution can be attributed to the successive deprotonation of the organic building blocks due to the inductive effect. Our finding offers a facile strategy towards controlling the supramolecular assembly pathways and provides a comprehensive understanding of the 2D crystal engineering on surfaces.  相似文献   

2.
Carotenoid microcrystals, extracted from cells of carrot roots and consisting of 95 % of achiral β‐carotene, exhibit a very intense chiroptical (ECD and ROA) signal. The preferential chirality of crystalline aggregates that consist mostly of achiral building blocks is a newly observed phenomenon in nature, and may be related to asymmetric information transfer from the chiral seeds (small amount of α‐carotene or lutein) present in carrot cells. To confirm this hypothesis, we synthesized several model aggregates from various achiral and chiral carotenoids. Because of the sergeant‐and‐soldier behavior, a small number of chiral sergeants (α‐carotene or astaxanthin) force the achiral soldier molecules (β‐ or 11,11′‐[D2]‐β‐carotene) to jointly form supramolecular assemblies of induced chirality. The chiral amplification observed in these model systems confirmed that chiral microcrystals appearing in nature might consist predominantly of achiral building blocks and their supramolecular chirality might result from the co‐crystallization of chiral and achiral analogues.  相似文献   

3.
A self-progressing chiral self-assembly form an achiral and C6-symmetric molecule, resulting in a chiral amplification with prolonging the time. The system shows three distinct luminescent colors with the change of time in the same solution system.  相似文献   

4.
The induced aggregation of achiral building blocks by a chiral species to form chiral aggregates with memorized chirality has been observed for a number of systems. However, chiral memory in isolated aggregates of achiral building blocks remains rare. One possible reason for this discrepancy could be that not much is understood in terms of designing these chiral aggregates. Herein, we report a strategy for creating such isolable chiral aggregates from achiral building blocks that retain chiral memory after the facile physical removal of the chiral templates. This strategy was used for the isolation of chiral homoaggregates of neutral achiral π-conjugated carboxylic acids in pure aqueous solution. Under what we have termed an "interaction-substitution" mechanism, we generated chiral homoaggregates of a variety of π-conjugated carboxylic acids by using carboxymethyl cellulose (CMC) as a mediator in acidic aqueous solutions. These aggregates were subsequently isolated from the CMC templates whilst retaining their memorized supramolecular chirality. Circular dichroism (CD) spectra of the aggregates formed in the acidic CMC solution exhibited bisignated exciton-coupled signals of various signs and intensities that were maintained in the isolated pure homoaggregates of the achiral π-conjugated carboxylic acids. The memory of the supramolecular chirality in the isolated aggregates was ascribed to the substitution of COOH/COOH hydrogen-bonding interaction between the carboxylic acid groups within the aggregates for the hydrogen-bonding interactions between the COOH groups of the building blocks and the chiral templates. We expect that this "interaction-substitution" procedure will open up a new route to isolable pure chiral aggregates from achiral species.  相似文献   

5.
The induced aggregation of achiral building blocks by a chiral species to form chiral aggregates with memorized chirality has been observed for a number of systems. However, chiral memory in isolated aggregates of achiral building blocks remains rare. One possible reason for this discrepancy could be that not much is understood in terms of designing these chiral aggregates. Herein, we report a strategy for creating such isolable chiral aggregates from achiral building blocks that retain chiral memory after the facile physical removal of the chiral templates. This strategy was used for the isolation of chiral homoaggregates of neutral achiral π‐conjugated carboxylic acids in pure aqueous solution. Under what we have termed an “interaction–substitution” mechanism, we generated chiral homoaggregates of a variety of π‐conjugated carboxylic acids by using carboxymethyl cellulose (CMC) as a mediator in acidic aqueous solutions. These aggregates were subsequently isolated from the CMC templates whilst retaining their memorized supramolecular chirality. Circular dichroism (CD) spectra of the aggregates formed in the acidic CMC solution exhibited bisignated exciton‐coupled signals of various signs and intensities that were maintained in the isolated pure homoaggregates of the achiral π‐conjugated carboxylic acids. The memory of the supramolecular chirality in the isolated aggregates was ascribed to the substitution of COOH/COOH hydrogen‐bonding interaction between the carboxylic acid groups within the aggregates for the hydrogen‐bonding interactions between the COOH groups of the building blocks and the chiral templates. We expect that this “interaction–substitution” procedure will open up a new route to isolable pure chiral aggregates from achiral species.  相似文献   

6.
Hierarchical supramolecular chiral liquid‐crystalline (LC) polymer assemblies are challenging to construct in situ in a controlled manner. Now, polymerization‐induced chiral self‐assembly (PICSA) is reported. Hierarchical supramolecular chiral azobenzene‐containing block copolymer (Azo‐BCP) assemblies were constructed with π–π stacking interactions occurring in the layered structure of Azo smectic phases. The evolution of chirality from terminal alkyl chain to Azo mesogen building blocks and further induction of supramolecular chirality in LC BCP assemblies during PICSA is achieved. Morphologies such as spheres, worms, helical fibers, lamellae, and vesicles were observed. The morphological transition had a crucial effect on the chiral expression of Azo‐BCP assemblies. The supramolecular chirality of Azo‐BCP assemblies destroyed by 365 nm UV irradiation can be recovered by heating–cooling treatment; this dynamic reversible achiral–chiral switching can be repeated at least five times.  相似文献   

7.
Scanning tunnelling microscope observations at the 1‐phenyloctane/graphite interface reveal how chiral structural information at the molecular level is transferred and expressed structurally at the 2D supramolecular level for a porous system. The chirality of self‐assembled molecular networks formed by chiral dehydrobenzo[12]annulene (cDBA) derivatives having three chiral chains and three achiral chains, alternatingly, is compared with those of cDBAs having six chiral chains reported previously. While for all cDBAs homochiral surfaces are formed, their handedness is not simply a reflection of the absolute configuration of the stereogenic centres. Both the number of stereogenic centres as well as the length of the achiral chains determine the supramolecular handedness, providing a deep insight into the supramolecular chirality induction mechanisms at play. Moreover, these cDBAs act to induce chirality in porous networks formed by achiral DBAs.  相似文献   

8.
The formation of DNA nucleoside-assisted π-conjugated nanostructures was studied by means of scanning tunneling microscopy (STM) and force field simulations. Upon adsorption of the achiral oligo(p-phenylenevinylene) (OPV) derivative at the liquid/solid interface, racemic conglomerates with mirror related rosettes are formed. Addition of the DNA nucleosides D- and L-thymidine, which act as "chiral handles", has a major effect on the supramolecular structure and the expression of chirality of the achiral OPV molecules. The influence of these "chiral handles" on the expression of chirality is probed at two levels: monolayer symmetry and monolayer orientation with respect to the substrate. This was further explored by tuning the molar ratio of the building blocks. Molecular modeling simulations give an atomistic insight into the monolayer construction, as well as the energetics governing the assembly. Thymidine is able to direct the chirality and the pattern of OPV molecules on the surface, creating chiral lamellae of π-conjugated dimers.  相似文献   

9.
A fluorine-containing tetrasubstituted stereogenic center is a highly valued structural feature in medicinal chemistry. Herein, we describe the direct coupling of racemic α-fluoronitriles and aldehydes promoted by a chiral CuI/Barton's base catalytic system, delivering α-tetrasubstituted α-fluoro-β-hydroxynitriles with satisfactory stereoselection. The stereochemical course was positively biased by the combined use of asymmetrical achiral thiourea as a supplementary ligand for CuI, which significantly enhanced the stereoselectivity. Both aromatic and aliphatic aldehydes were implemented to provide densely and stereoselectively functionalized chiral building blocks with aliphatic and aromatic tails.  相似文献   

10.
We present investigations on noncovalent bonding and supramolecular self-assembly of two related molecular building blocks at a noble metal surface: 4-[trans-2-(pyrid-4-yl-vinyl)]benzoic acid (PVBA) and 4-[(pyrid-4-yl-ethynyl)]benzoic acid (PEBA). These rigid, rodlike molecules comprising the same complementary moieties for hydrogen bond formation are comparable in shape and size. For PVBA, the ethenylene moiety accounts for two-dimensional (2-D) chirality upon confinement to a surface; PEBA is linear and thus 2-D achiral. Molecular films were deposited on a Ag(111) surface by organic molecular beam epitaxy and characterized by scanning tunneling microscopy. At low temperatures (around 150 K), both species form irregular networks of flat lying molecules linked via their endgroups in a diffusion-limited aggregation process. In the absence of kinetic limitations (adsorption or annealing at room temperature), hydrogen-bonded supramolecular assemblies form which are markedly different. With PVBA, enantiomorphic twin chains in two mirror-symmetric species running along a high-symmetry direction of the substrate lattice form by diastereoselective self-assembly of one enantiomer. The chirality signature is strictly correlated between neighboring twin chains. Enantiopure one-dimensional (1-D) supramolecular nanogratings with tunable periodicity evolve at intermediate coverages, reflecting chiral resolution in micrometer domains. In contrast, PEBA assembles in 2-D hydrogen-bonded islands, which are enantiomorphic because of the orientation of the supramolecular arrangements along low-symmetry directions of the substrate. Thus, for PVBA, chiral molecules form 1-D enantiomorphic supramolecular structures because of mesoscopic resolution of a 2-D chiral species, whereas with PEBA, the packing of an achiral species causes 2-D enantiomorphic arrangements. Model simulations of supramolecular ordering provide a deeper understanding of the stability of these systems.  相似文献   

11.
The synthesis and characterization of a range of chiral β-diimine ligands and their complexes with palladium(II) has been investigated. The introduction of chirality can be easily achieved through a combination of both achiral and chiral building blocks. The absolute configuration of the stereochemical centers has been determined. In addition, representative X-ray structures of both ligands and complexes have been determined.  相似文献   

12.
The self-organization of supramolecular structures, in particular gold-containing hydrogen-bonded rosettes, on highly oriented pyrolytic graphite (HOPG) surfaces was investigated by tapping-mode atomic force microscopy (TM-AFM) and scanning tunneling microscopy (STM). TM-AFM and high-resolution STM results show that these hydrogen-bonded assemblies self-organize to form highly ordered domains on HOPG surfaces. We find that a subtle change in one of the building blocks induces two different orientations of the assembly with respect to the surface. These results provide information on the control over the construction of supramolecular nanoarchitectures in 2D with the potential for the manufacturing of functional materials based on structural manipulation of molecular components.  相似文献   

13.
Hierarchical supramolecular chiral liquid-crystalline (LC) polymer assemblies are challenging to construct in situ in a controlled manner. Now, polymerization-induced chiral self-assembly (PICSA) is reported. Hierarchical supramolecular chiral azobenzene-containing block copolymer (Azo-BCP) assemblies were constructed with π–π stacking interactions occurring in the layered structure of Azo smectic phases. The evolution of chirality from terminal alkyl chain to Azo mesogen building blocks and further induction of supramolecular chirality in LC BCP assemblies during PICSA is achieved. Morphologies such as spheres, worms, helical fibers, lamellae, and vesicles were observed. The morphological transition had a crucial effect on the chiral expression of Azo-BCP assemblies. The supramolecular chirality of Azo-BCP assemblies destroyed by 365 nm UV irradiation can be recovered by heating–cooling treatment; this dynamic reversible achiral–chiral switching can be repeated at least five times.  相似文献   

14.
A C3‐symmetric benzene‐1,3,5‐tricarboxamide substituted with ethyl cinnamate was found to self‐assemble into supramolecular gels with macroscopic chirality in a DMF/H2O mixture. The achiral compound simultaneously formed left‐ and right‐handed twists in an unequal number, thus resulting in the macroscopic chirality of the gels without any chiral additives. Furthermore, ester–amide exchange reactions with chiral amines enabled the control of both the handedness of the twists and the macroscopic chirality of the gels, depending on the structures of the chiral amines. These results provide new prospects for understanding and regulating symmetry breaking in assemblies of supramolecular gels formed from achiral molecular building blocks.  相似文献   

15.
Through mimicking both the chiral and energy transfer in an artificial self‐assembled system, not only was chiral transfer realized but also a dual upconverted and downconverted energy transfer system was created that emit circularly polarized luminescence. The individual chiral π‐gelator can self‐assemble into a nanofiber exhibiting supramolecular chirality and circularly polarized luminescence (CPL). In the presence of an achiral sensitizer PdII octaethylporphyrin derivative, both chirality transfer from chiral gelator to achiral sensitizer and triplet‐triplet energy transfer from excited sensitizer to chiral gelator could be realized. Upconverted CPL could be observed through a triplet–triplet annihilation photon upconversion (TTA‐UC), while downconverted CPL could be obtained from chirality‐transfer‐induced emission of the achiral sensitizer. The interplay between chiral energy acceptor and achiral sensitizer promoted the communication of chiral and excited energy information.  相似文献   

16.
We have developed a general method to construct optically active porphyrin supramolecular assemblies by using a simple air-water interfacial assembly process. The method involved the in situ diprotonation of the free-base porphyrins at the air-water interface and subsequent assembly under compression. We showed that two intrinsically achiral water-insoluble free-base porphyrin derivatives, 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine (H(2)OEP) and 5,10,15,20-tetra-p-tolyl-21H,23H-porphine (H(2)TPPMe), could be diprotonated when spread onto a 2.4 M hydrochloric acid solution surface, and the Langmuir-Schaefer (LS) films fabricated from the subphase exhibited strong circular dichroism (CD) absorption, whereas those fabricated from pure Milli-Q water subphase did not. The experimental data suggested that the helical stacking of the achiral porphyrin building blocks was responsible for the supramolecular chirality of the assemblies. Interestingly, such a method was successfully applied to a series of other intrinsically achiral free-base porphyrins such as 5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-porphine (H(2)TPPOMe), 5,10,15,20-tetraphenyl-21H,23H-porphine (H(2)TPP), 5,10,15,20-tetrakis(4-(allyloxy)phenyl)-21H,23H-porphine (H(2)TPPOA), and 5,10,15,20-tetrakis(3,5-dimethoxyphenyl)-21H,23H-porphine (H(2)TPPDOMe). A possible mechanism has been proposed. The method provides a facile way to obtain optically active porphyrin supramolecular assemblies by using intrinsically achiral water-insoluble free-base porphyrin derivatives.  相似文献   

17.
The design and fabrication of quantum dots (QDs) with circularly polarized luminescence (CPL) has been a great challenge in developing chiroptical materials. We herein propose an alternative to the use of chiral capping reagents on QDs for the fabrication of CPL‐active QDs that is based on the supramolecular self‐assembly of achiral QDs with chiral gelators. Full‐color‐tunable CPL‐active QDs were obtained by simple mixing or gelation of a chiral gelator and achiral 3‐mercaptopropionic acid capped QDs. In addition, the handedness of the CPL can be controlled by the supramolecular chirality of the gels. Moreover, QDs with circularly polarized white light emission were fabricated for the first time by tuning the blending ratio of colorful QDs in the gel. The chirality transfer in the co‐assembly of the achiral QDs with the gelator and the spacer effect of the capping reagents on the QD surface are also discussed. This work provides new insight into the design of functional chiroptical materials.  相似文献   

18.
Macroscopic supramolecular assembly bridges fundamental research on molecular recognition and the potential applications as bulk supramolecular materials. However, challenges remain to realize stable precise assembly, which is significant for further functions. To handle this issue, the Marangoni effect is applied to achieve spontaneous locomotion of macroscopic building blocks to reach interactive distance, thus contributing to formation of ordered structures. By increasing the density of the building blocks, the driving force for assembly transforms from a hydrophobic–hydrophobic interaction to hydrophilic–hydrophilic interaction, which is favorable for introducing hydrophilic coatings with supramolecular interactive groups on matched surfaces, consequently realizing the fabrication of stable precise macroscopic supramolecular assemblies.  相似文献   

19.
A long-standing challenge to synthesis can now be met through the use of new and powerful catalytic asymmetric reactions for the assembly of complex chiral molecules with quaternary stereocenters from achiral building blocks. The reaction sequence shown below is just one example discussed in this review.  相似文献   

20.
The design and synthesis of achiral organic functional molecules which can assemble into a chiral with selective handedness in the absence of chiral substances is an important in understanding the role chirality plays within these systems. In this review, we described general approaches towards supramolecular chiral molecules the synthesis and self‐assembly of achiral molecule to active chiral molecules to investigate controlled supramolecular chiral nanostructures with their photoluminescent properties for rapid, sensitive and selective detection of analytes of choice. Various small molecules have been discussed for achiral to chiral along with induction of chirality and controlled chiral helical structures in detail. We discussed few examples where stimuli used to control the chirality such as temperature, pH etc. Finally, we will also explore on the photo responsive helicity properties of the aggregation induced emission active molecule such as tetraphenylethene conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号