首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA logic gates are devices composed entirely of DNA that perform Boolean logic operations on one or more oligonucleotide inputs. Typical outputs of DNA logic gates are oligonucleotides or fluorescent signals. Direct activation of protein function has not been engineered as an output of a DNA‐based computational circuit. Explicit control of protein activation enables the immediate triggering of enzyme function and could yield DNA computation outputs that are otherwise difficult to generate. By using zinc‐finger proteins, AND, OR, and NOR logic gates were created that respond to short oligonucleotide inputs and lead to the activation or deactivation of a split‐luciferase enzyme. The gate designs are simple and modular, thus enabling integration with larger multigate circuits, and the modular structure gives flexibility in the choice of protein output. The gates were also modified with translator circuits to provide protein activation in response to microRNA inputs as potential cellular cancer markers.  相似文献   

2.
Functional nanomaterials based on molecular self‐assembly hold great promise for applications in biomedicine and biotechnology. However, their efficacy could be a problem and can be improved by precisely controlling the size, structure, and functions. This would require a molecular engineering design capable of producing monodispersed functional materials characterized by beneficial changes in size, shape, and chemical structure. To address this challenge, we have designed and constructed a series of amphiphilic oligonucleotide molecules. In aqueous solutions, the amphiphilic oligonucleotide molecules, consisting of a hydrophilic oligonucleotide covalently linked to hydrophobic diacyllipid tails, spontaneously self‐assemble into monodispersed, three‐dimensional micellar nanostructures with a lipid core and a DNA corona. These hierarchical architectures are results of intermolecular hydrophobic interactions. Experimental testing further showed that these types of micelles have excellent thermal stability and their size can be fine‐tuned by changing the length of the DNA sequence. Moreover, in the micelle system, the molecular recognition properties of DNA are intact, thus, our DNA micelles can hybridize with complimentary sequences while retaining their structural integrity. Importantly, when interacting with cell membranes, the highly charged DNA micelles are able to disintegrate themselves and insert into the cell membrane, completing the process of internalization by endocytosis. Interestingly, the fluorescence was found accumulated in confined regions of cytosole. Finally, we show that the kinetics of this internalization process is size‐dependent. Therefore, cell permeability, combined with small sizes and natural nontoxicity are all excellent features that make our DNA–micelles highly suitable for a variety of applications in nanobiotechnology, cell biology, and drug delivery systems.  相似文献   

3.
It is believed that connecting biomolecular computation elements in complex networks of communicating molecules may eventually lead to a biocomputer that can be used for diagnostics and/or the cure of physiological and genetic disorders. Here, a bioelectronic interface based on biomolecule‐modified electrodes has been designed to bridge reversible enzymatic logic gates with reversible DNA‐based logic gates. The enzyme‐based Fredkin gate with three input and three output signals was connected to the DNA‐based Feynman gate with two input and two output signals—both representing logically reversible computing elements. In the reversible Fredkin gate, the routing of two data signals between two output channels was controlled by the control signal (third channel). The two data output signals generated by the Fredkin gate were directed toward two electrochemical flow cells, responding to the output signals by releasing DNA molecules that serve as the input signals for the next Feynman logic gate based on the DNA reacting cascade, producing, in turn, two final output signals. The Feynman gate operated as the controlled NOT gate (CNOT), where one of the input channels controlled a NOT operation on another channel. Both logic gates represented a highly sophisticated combination of input‐controlled signal‐routing logic operations, resulting in redirecting chemical signals in different channels and performing orchestrated computing processes. The biomolecular reaction cascade responsible for the signal processing was realized by moving the solution from one reacting cell to another, including the reacting flow cells and electrochemical flow cells, which were organized in a specific network mimicking electronic computing circuitries. The designed system represents the first example of high complexity biocomputing processes integrating enzyme and DNA reactions and performing logically reversible signal processing.  相似文献   

4.
Modern electronic microprocessors use semiconductor logic gates organized on a silicon chip to enable efficient inter‐gate communication. Here, arrays of communicating DNA logic gates integrated on a single DNA tile were designed and used to process nucleic acid inputs in a reusable format. Our results lay the foundation for the development of a DNA nanoprocessor, a small and biocompatible device capable of performing complex analyses of DNA and RNA inputs.  相似文献   

5.
We demonstrate the use of two different wavelength ranges of excitation light as inputs to remotely trigger the responses of the self‐assembled DNA devices (D‐OR). As an important feature of this device, the dependence of the readout fluorescent signals on the two external inputs, UV excitation for 1 min and/or near infrared irradiation (NIR) at 800 nm fs laser pulses, can mimic function of signal communication in OR logic gates. Their operations could be reset easily to its initial state. Furthermore, these DNA devices exhibit efficient cellular uptake, low cytotoxicity, and high bio‐stability in different cell lines. They are considered as the first example of a photo‐responsive DNA logic gate system, as well as a biocompatible, multi‐wavelength excited system in response to UV and NIR. This is an important step to explore the concept of photo‐responsive DNA‐based systems as versatile tools in DNA computing, display devices, optical communication, and biology.  相似文献   

6.
Aligning carbon nanotubes (CNTs) is a key challenge for fabricating CNT‐based electronic devices. Herein, we report a spherical nucleic acid (SNA) mediated approach for the highly precise alignment of CNTs at prescribed sites on DNA origami. We find that the cooperative DNA hybridization occurring at the interface of SNA and DNA‐coated CNTs leads to an approximately five‐fold improvement of the positioning efficiency. By combining this with the intrinsic positioning addressability of DNA origami, CNTs can be aligned in parallel with an extremely small angular variation of within 10°. Moreover, we demonstrate that the parallel alignment of CNTs prevents incorrect logic functionality originating from stray conducting paths formed by misaligned CNTs. This SNA‐mediated method thus holds great potential for fabricating scalable CNT arrays for nanoelectronics.  相似文献   

7.
A simple, versatile, and label‐free DNA computing strategy was designed by using toehold‐mediated strand displacement and stem‐loop probes. A full set of logic gates (YES, NOT, OR, NAND, AND, INHIBIT, NOR, XOR, XNOR) and a two‐layer logic cascade were constructed. The probes contain a G‐quadruplex domain, which was blocked or unfolded through inputs initiating strand displacement and the obviously distinguishable light‐up fluorescent signal of G‐quadruplex/NMM complex was used as the output readout. The inputs are the disease‐specific nucleotide sequences with potential for clinic diagnosis. The developed versatile computing system based on our label‐free and modular strategy might be adapted in multi‐target diagnosis through DNA hybridization and aptamer‐target interaction.  相似文献   

8.
The monitoring of molecular systems usually requires sophisticated technologies to interpret nanoscale events into electronic‐decipherable signals. We demonstrate a new method for obtaining read‐outs of molecular states that uses graphics processing units made from molecular circuits. Because they are made from molecules, the units are able to directly interact with molecular systems. We developed deoxyribozyme‐based graphics processing units able to monitor nucleic acids and output alphanumerical read‐outs via a fluorescent display. Using this design we created a molecular 7‐segment display, a molecular calculator able to add and multiply small numbers, and a molecular automaton able to diagnose Ebola and Marburg virus sequences. These molecular graphics processing units provide insight for the construction of autonomous biosensing devices, and are essential components for the development of molecular computing platforms devoid of electronics.  相似文献   

9.
Oligonucleotide‐based molecular circuits offer the exciting possibility to introduce autonomous signal processing in biomedicine, synthetic biology, and molecular diagnostics. Here we introduce bivalent peptide–DNA conjugates as generic, noncovalent, and easily applicable molecular locks that allow the control of antibody activity using toehold‐mediated strand displacement reactions. Employing yeast as a cellular model system, reversible control of antibody targeting is demonstrated with low nM concentrations of peptide–DNA locks and oligonucleotide displacer strands. Introduction of two different toehold strands on the peptide–DNA lock allowed signal integration of two different inputs, yielding logic OR‐ and AND‐gates. The range of molecular inputs could be further extended to protein‐based triggers by using protein‐binding aptamers.  相似文献   

10.
The development and in‐depth analysis of T4 DNA ligase‐catalyzed DNA templated oligonucleotide polymerization toward the generation of diversely functionalized nucleic acid polymers is described. The NNNNT codon set enables low codon bias, high fidelity, and high efficiency for the polymerization of ANNNN libraries comprising various functional groups. The robustness of the method was highlighted in the copolymerization of a 256‐membered ANNNN library comprising 16 sub‐libraries modified with different functional groups. This enabled the generation of diversely functionalized synthetic nucleic acid polymer libraries with 93.8 % fidelity. This process should find ready application in DNA nanotechnology, DNA computing, and in vitro evolution of functional nucleic acid polymers.  相似文献   

11.
Chemists are now able to emulate the ideas and instruments of mathematics and computer science with molecules. The integration of molecular logic gates into small arrays has been a growth area during the last few years. The design principles underlying a collection of these cases are examined. Some of these computing molecules are applicable in medical‐ and biotechnologies. Cases of blood diagnostics, ‘lab‐on‐a‐molecule’ systems, and molecular computational identification of small objects are included.  相似文献   

12.
The isolation of specific nucleic acid sequences is a major bottleneck in molecular diagnostics. Magnetic beads/particles are typically used as solid supports for the capture of DNA targets to improve sample throughput but aggregate over time resulting in lower capture efficiency and obstruction of liquid handling devices. Herein, we describe a particle‐free approach to sequence‐specific DNA extraction using a magnetic liquid support and ion‐tagged oligonucleotide (ITO) probes. ITO conjugates were synthesized with the highest yields ever achieved for the radical thiol‐ene coupling of a substrate and oligonucleotide. In addition to distinguishing nucleotide mismatches, the ITO and magnetic liquid‐based approach was more sensitive than a commercial magnetic bead‐based method for the capture of target DNA from a pool of interfering genomic DNA.  相似文献   

13.
We show herein that allostery offers a key strategy for the design of out‐of‐equilibrium systems by engineering allosteric DNA‐based nanodevices for the transient loading and release of small organic molecules. To demonstrate the generality of our approach, we used two model DNA‐based aptamers that bind ATP and cocaine through a target‐induced conformational change. We re‐engineered these aptamers so that their affinity towards their specific target is controlled by a DNA sequence acting as an allosteric inhibitor. The use of an enzyme that specifically cleaves the inhibitor only when it is bound to the aptamer generates a transient allosteric control that leads to the release of ATP or cocaine from the aptamers. Our approach confirms that the programmability and predictability of nucleic acids make synthetic DNA/RNA the perfect candidate material to re‐engineer synthetic receptors that can undergo chemical fuel‐triggered release of small‐molecule cargoes and to rationally design non‐equilibrium systems.  相似文献   

14.
Polymerase/nicking enzymes and nucleic‐acid scaffolds are implemented as DNA machines for the development of amplified DNA‐detection schemes, and for the design of logic gates. The analyte nucleic acid target acts, also, as input for the logic gates. In the presence of two DNA targets, acting as inputs, and appropriate DNA scaffolds, the polymerase‐induced replication of the scaffolds, followed by the nicking of the replication products, are activated, leading to the autonomous synthesis of the Mg2+‐dependent DNAzyme or the Mg2+‐dependent DNAzyme subunits. These biocatalysts cleave a fluorophore/quencher‐functionalized nucleic‐acid substrate, thus providing fluorescence signals for the sensing events or outputs for the logic gates. The systems are used to develop OR, AND, and Controlled‐AND gates, and the DNA‐analyte targets represent two nucleic acid sequences of the smallpox viral genome.  相似文献   

15.
Despite the widespread use of quantum dots (QDs) for biosensing and bioimaging, QD‐based bio‐interfaceable and reconfigurable molecular computing systems have not yet been realized. DNA‐programmed dynamic assembly of multi‐color QDs is presented for the construction of a new class of fluorescence resonance energy transfer (FRET)‐based QD computing systems. A complete set of seven elementary logic gates (OR, AND, NOR, NAND, INH, XOR, XNOR) are realized using a series of binary and ternary QD complexes operated by strand displacement reactions. The integration of different logic gates into a half‐adder circuit for molecular computation is also demonstrated. This strategy is quite versatile and straightforward for logical operations and would pave the way for QD‐biocomputing‐based intelligent molecular diagnostics.  相似文献   

16.
The analysis of DNA adducts is of importance in understanding DNA damage, and in the last few years mass spectrometry (MS) has emerged as the most comprehensive and versatile tool for routine characterization of modified oligonucleotides. The structural analysis of modified oligonucleotides, although routinely analyzed using mass spectrometry, is followed by a large amount of data, and a significant challenge is to locate the exact position of the adduct by computational spectral interpretation, which still is a bottleneck. In this report, we present an additional feature of the in‐house developed GenoMass software, which determines the exact location of an adduct in modified oligonucleotides by connecting tandem mass spectrometry (MS/MS) to a combinatorial isomer library generated in silico for nucleic acids. The performance of this MS/MS approach using GenoMass software was evaluated by MS/MS data interpretation for an unadducted and its corresponding N‐acetylaminofluorene (AAF) adducted 17‐mer (5'OH‐CCT ACC CCT TCC TTG TA‐3′OH) oligonucleotide. Further computational screening of this AAF adducted 17‐mer oligonucleotide (5′OH‐CCT ACC CCT TCC TTG TA‐3′OH) from a complex oligonucleotide mixture was performed using GenoMass. Finally, GenoMass was also used to identify the positional isomers of the AAF adducted 15‐mer oligonucleotide (5′OH‐ATGAACCGGAGGCCC‐3′OH). GenoMass is a simple, fast, data interpretation software that uses an in silico constructed library to relate the MS/MS sequencing approach to identify the exact location of adduct on oligonucleotides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Programming intelligent DNA nanocarriers for the targeted transport of molecular payloads in living cells has attracted extensive attention. In vivo activation of these nanocarriers usually relies on external light irradiation. An interest is emerging in the automatic recognition of intracellular surroundings by nanocarriers and their in situ activation under the control of programmed DNA‐computation circuits. Herein, we report the integration of DNA circuits with framework nucleic acid (FNA) nanocarriers that consist of a truncated square pyramid (TSP) cage and a built‐in duplex cargo containing an antisense strand of the target mRNA. An i‐motif and ATP aptamer embedded in the TSP are employed as logic‐controlling units to respond to H+ and ATP inside cellular compartments, triggering the release of the sensing element for fluorescent mRNA imaging. Logic‐controlled FNA devices could be used to target drug delivery, enabling precise disease treatment.  相似文献   

19.
20.
The precise functionalization of self‐assembled nanostructures with spatial and stereocontrol is a major objective of nanotechnology and holds great promise for many applications. Herein, the nanoscale addressability of DNA origami was exploited to develop a precise copy‐machine‐like platform that can transfer two‐dimensional oligonucleotide patterns onto the surface of gold nanoparticles (AuNPs) through a deliberately designed toehold‐initiated DNA displacement reaction. This strategy of DNA‐origami‐based nanoimprinting lithography (DONIL) demonstrates high precision in controlling the valence and valence angles of AuNPs. These DNA‐decorated AuNPs act as precursors in the construction of discrete AuNP clusters with desired chirality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号