首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfoxide synthases are non-heme iron enzymes that participate in the biosynthesis of thiohistidines, such as ergothioneine and ovothiol A. The sulfoxide synthase EgtB from Chloracidobacterium thermophilum (CthEgtB) catalyzes oxidative coupling between the side chains of N-α-trimethyl histidine (TMH) and cysteine (Cys) in a reaction that entails complete reduction of molecular oxygen, carbon–sulfur (C−S) and sulfur–oxygen (S−O) bond formation as well as carbon–hydrogen (C−H) bond cleavage. In this report, we show that CthEgtB and other bacterial sulfoxide synthases cannot efficiently accept selenocysteine (SeCys) as a substrate in place of cysteine. In contrast, the sulfoxide synthase from the filamentous fungus Chaetomium thermophilum (CthEgt1) catalyzes C−S and C−Se bond formation at almost equal efficiency. We discuss evidence suggesting that this functional difference between bacterial and fungal sulfoxide synthases emerges from different modes of oxygen activation.  相似文献   

2.
The new diiodine basicity scale pKBI2 is quasi‐orthogonal to most known Lewis basicity scales (hydrogen‐bond, dative‐bond and cation basicity scales). The diiodine basicity falls in the sequence N>P≈Se>S>I≈O>Br>Cl>F for the iodine‐bond acceptor atomic site and SbO≈NO≈AsO>SeO>PO>SO>C?O>? O? >SO2 or PS?? S? >C?S?N?C?S for the functionality of oxygen or sulfur bases. Substituent effects are quantified through linear free energy relationships, which allow the calculation of individual complexation constants for each site of polybases and thus the classification of aromatic ethers as carbon π bases and of aromatic amines, thioethers and selenoethers as N, S and Se bases, respectively. The pKBI2 values of nBu3N+‐N?C≡N, 2‐aminopyridine and 1,10‐phenanthroline reveal a superbasic nitrile, a hydrogen‐bond‐assisted iodine bond and a two‐centre iodine bond, respectively. The diiodine basicity scale is a general inorganic but family‐dependent organic halogen‐bond basicity scale because organic halogen‐bond donors such as IC≡N and ICF3 have a stronger electrostatic character than I2. The family independence can be restored by the addition of an electrostatic parameter, either the experimental pKBHX hydrogen‐bond basicity scale or the computed minimum electrostatic potential.  相似文献   

3.
A copper‐catalyzed three‐component reaction of alkenes, acetonitrile, and sodium azide afforded γ‐azido alkyl nitriles by formation of one C(sp3)−C(sp3) bond and one C(sp3)−N bond. The transformation allows concomitant introduction of two highly versatile groups (CN and N3) across the double bond. A sequence involving the copper‐mediated generation of a cyanomethyl radical and its subsequent addition to an alkene, and a C(sp3)−N bond formation accounted for the reaction outcome. The resulting γ‐azido alkyl nitrile can be easily converted into 1,4‐diamines, γ‐amino nitriles, γ‐azido esters, and γ‐lactams of significant synthetic value.  相似文献   

4.
A new series of nitro‐substituted bis(imino)pyridine ligands {2,6‐bis[1‐(2‐methyl‐4‐nitrophenylimino)ethyl]pyridine, 2,6‐bis[1‐(4‐nitrophenylimino)ethyl]pyridine, (1‐{6‐[1‐(4‐nitro‐phenylimino)‐ethyl]‐pyridin‐2‐yl}‐ethylidene)‐(2,4,6‐trimethyl‐phenyl)‐amine, and 2,6‐bis[1‐(2‐methyl‐3‐nitrophenylimino)ethyl]pyridine} and their corresponding Fe(II) complexes [{p‐NO2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐ Me? p‐NO2}FeCl2 ( 10 ), L2FeCl2 ( 11 ), {m‐NO2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? m‐NO2}FeCl2 ( 12 ), and {p‐NO2? Ph? N?C(Me)? Py? C(Me)?N? Mes}FeCl2 ( 14 )] were synthesized. According to X‐ray analysis, there were shortenings of the axial Fe? N bond lengths (up to 0.014 Å) in para‐nitro‐substituted complex 10 and (up to 0.015 Å) in meta‐nitro‐substituted complex 12 versus the Fe(II) complex without nitro groups [{o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me}FeCl2 ( 1 )]. Complexes 10 , 12 , and 14 afforded very active catalysts for the production of α‐olefins and were more temperature‐stable and had longer lifetimes than parent non‐nitro‐substituted Fe(II) complex 1 . The reaction between FeCl2 and a sterically less hindered ligand [p‐NO2? Ph? N?C(Me)? Py? C(Me)?N? Ph? p‐NO2] resulted in the formation of octahedral complex 11 . A para‐dialkylamino‐substituted bis(imino)pyridine ligand [p‐NEt2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? p‐NEt2] and the corresponding Fe(II) complex [{p‐NEt2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? p‐NEt2}FeCl2 ( 16 )] were synthesized to evaluate the effect of enhanced electron donation of the ligand on the catalytic performance. According to X‐ray analysis, there was a shortening (up to 0.043 Å) of the axial Fe? N bond lengths in para‐diethylamino‐substituted complex 16 in comparison with parent Fe(II) complex 1 . © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2615–2635, 2006  相似文献   

5.
The electronic structure of iron‐oxo porphyrin π‐cation radical complex Por·+FeIV?O (S? H) has been studied for doublet and quartet electronic states by means of two methods of the quantum chemical topology analysis: electron localization function (ELF) η(r) and electron density ρ(r). The formation of this complex leads to essential perturbation of the topological structure of the carbon–carbon bonds in porphyrin moiety. The double C?C bonds in the pyrrole anion subunits, represented by pair of bonding disynaptic basins Vi=1,2(C,C) in isolated porphyrin, are replaced by single attractor V(C,C)i=1–20 after complexation with the Fe cation. The iron–nitrogen bonds are covalent dative bonds, N→Fe, described by the disynaptic bonding basins V(Fe,N)i=1–4, where electron density is almost formed by the lone pairs of the N atoms. The nature of the iron–oxygen bond predicted by the ELF topological analysis, shows a main contribution of the electrostatic interaction, Feδ+···Oδ?, as long as no attractors between the C(Fe) and C(O) core basins were found, although there are common surfaces between the iron and oxygen basines and coupling between iron and oxygen lone pairs, that could be interpreted as a charge‐shift bond. The Fe? S bond, characterized by the disynaptic bonding basin V(Fe,S), is partially a dative bond with the lone pair donated from sulfur atom. The change of electronic state from the doublet (M = 2) to quartet (M = 4) leads to reorganization of spin polarization, which is observed only for the porphyrin skeleton (?0.43e to 0.50e) and S? H bond (?0.55e to 0.52e). © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The enantiomeric separation of 9‐fluorenylmethoxycarbonyl chloride (FMOC)‐homocysteine (Hcy) by CE was investigated using γ‐CD and the chiral ionic liquid (R)‐(1‐hydroxybutan‐2‐yl)(trimethyl)azanium‐bis(trifluoromethanesulfon)imidate (also called (R)‐N,N,N‐trimethyl‐2‐aminobutanol‐bis(trifluoromethane‐sulfon)imidate) (EtCholNTf2) as chiral selectors. Using 2 mM γ‐CD and 5 mM EtCholNTf2 in 50 mM borate buffer (pH 9), FMOC‐Hcy enantiomers were separated with a resolution value of 3.8. A reversal in the enantiomer migration order in comparison with the single use of γ‐CD in the separation buffer was obtained. Then, NMR experiments were carried out to elucidate the interactions taking place in the enantiomeric separation of FMOC‐Hcy. NMR analyses highlighted the formation of an inclusion complex since the hydrophobic group of FMOC‐Hcy was inserted into the γ‐CD cavity. Moreover, interactions between EtCholNTf2 and γ‐CD were also observed, suggesting that the chiral ionic liquid would also enter the cavity of the γ‐CD.  相似文献   

7.
Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein reported is a highly efficient copper‐catalyzed cyclization of γ‐unsaturated pentenols which terminates in C? C bond formation, a net alkene carboetherification. Both intra‐ and intermolecular C? C bond formations are demonstrated, thus yielding functionalized chiral tetrahydrofurans as well as fused‐ring and bridged‐ring oxabicyclic products. Transition‐state calculations support a cis‐oxycupration stereochemistry‐determining step.  相似文献   

8.
Borylation of the vinylic C? H bond of 1,4‐dioxene, 2,3‐dihydrofuran, 3,4‐dihydro‐2H‐pyran and their γ‐substituted analogs was carried out in the presence of bis(pinacolato)diboron (B2pin2) and a catalytic amount of IrI‐dtbpy (dtbpy=4,4′‐di‐tert‐butyl‐2,2′‐bipyridine) complex. The two boron atoms in B2pin2 participated in the coupling, thus giving two equivalents of the coupling product from one equivalent of B2pin2. The borylation of 1,4‐dioxene in hexane resulted in 81 % yield at room temperature. The borylation of 2,3‐dihydrofurans at 80 °C in octane suffered from low regioselectivity, and gave a mixture of α‐ and β‐coupling products even for hindered γ‐disubstituted analogs, but γ‐substituted analogs of 3,4‐dihydro‐2H‐pyran achieved high α‐selectivity, giving single coupling products. This protocol was applied to the syntheses of a key precursor of vineomycinone B2 methyl ester and other C‐substituted D ‐glucals by borylation of protected D ‐glucals with B2pin2 to give α‐boryl glucal followed by cross‐coupling with haloarenes, benzyl bromide, and allyl bromide. A catalytic cycle that involves the oxidative addition of sp2 C? H bond to iridium(III)‐trisboryl intermediate as the rate‐determining step has been proposed.  相似文献   

9.
A coordinatively unsaturated iron‐methyl complex having an N‐heterocyclic carbene ligand, [Cp*Fe(LMe)Me] ( 1 ; Cp*=η5‐C5Me5, LMe=1,3,4,5‐tetramethyl‐imidazol‐2‐ylidene), is synthesized from the reaction of [Cp*Fe(TMEDA)Cl] (TMEDA=N,N,N′,N′‐tetramethylethylenediamine) with methyllithium and LMe. Complex 1 is found to activate the C? H bonds of furan, thiophene, and benzene, giving rise to aryl complexes, [Cp*Fe(LMe)(aryl)] (aryl=2‐furyl ( 2 ), 2‐thienyl ( 3 ), phenyl ( 4 )). The C? H bond cleavage reactions are applied to the dehydrogenative coupling of furans or thiophenes with pinacolborane (HBpin) in the presence of tert‐butylethylene and a catalytic amount of 1 (10 mol % to HBpin). The borylation of the furan/thiophene or 2‐substituted furans/thiophenes occurs exclusively at the 2‐ or 5‐positions, respectively, whereas that of 3‐substituted furans/thiophenes takes place mainly at the 5‐position and gives a mixture of regioisomers. Treatment of 2 with 2 equiv of HBpin results in the quantitative formation of 2‐boryl‐furan and the borohydride complex [Cp*Fe(LMe)(H2Bpin)] ( 5 ). Heating a solution of 5 in the presence of tert‐butylethylene led to the formation of an alkyl complex [Cp*Fe(LMe)CH2CH2tBu] ( 6 ), which was found to cleave the C? H bond of furan to produce 2 . On the basis of these results, a possible catalytic cycle is proposed.  相似文献   

10.
The importance of aromatic C? O, C? N, and C? S bonds necessitates increasingly efficient strategies for their formation. Herein, we report a biomimetic approach that converts phenolic C? H bonds into C? O, C? N, and C? S bonds at the sole expense of reducing dioxygen (O2) to water (H2O). Our method hinges on a regio‐ and chemoselective copper‐catalyzed aerobic oxygenation to provide ortho‐quinones. ortho‐Quinones are versatile intermediates, whose direct catalytic aerobic synthesis from phenols enables a mild and efficient means of synthesizing polyfunctional aromatic rings.  相似文献   

11.
The structure of FeOx species supported on γ‐Al2O3 was investigated by using Fe K‐edge X‐ray absorption fine structure (XAFS) and X‐ray diffraction (XRD) measurements. The samples were prepared through the impregnation of iron nitrate on Al2O3 and co‐gelation of aluminum and iron sulfates. The dependence of the XRD patterns on Fe loading revealed the formation of α‐Fe2O3 particles at an Fe loading of above 10 wt %, whereas the formation of iron‐oxide crystals was not observed at Fe loadings of less than 9.0 wt %. The Fe K‐edge XAFS was characterized by a clear pre‐edge peak, which indicated that the Fe?O coordination structure deviates from central symmetry and that the degree of Fe?O?Fe bond formation is significantly lower than that in bulk samples at low Fe loading (<9.0 wt %). Fe K‐edge extended XAFS oscillations of the samples with low Fe loadings were explained by assuming an isolated iron‐oxide monomer on the γ‐Al2O3 surface.  相似文献   

12.
Stoichiometric C?H bond activation of arenes mediated by iron carbonyls was reported by Pauson as early as in 1965, yet the catalytic C?H transformations have not been developed. Herein, an iron‐catalyzed annulation of N?H imines and internal alkynes to furnish cis‐3,4‐dihydroisoquinolines is described, and represents the first iron‐carbonyl‐catalyzed C?H activation reaction of arenes. Remarkablely, this is also the first redox‐neutral [4+2] annulation of imines and alkynes proceeding by C?H activation. The reaction also features only cis stereoselectivity and excellent atom economy as neither base, nor external ligand, nor additive is required. Experimental and theoretical studies reveal an oxidative addition mechanism for C?H bond activation to afford a dinuclear ferracycle and a synergetic diiron‐promoted H‐transfer to the alkyne as the turnover‐determining step.  相似文献   

13.
The present study reports the evidence for the multiple carbon–carbon bond insertion into the metal–heteroatom bond via a five‐coordinate metal complex. Detailed analysis of the model catalytic reaction of the carbon–sulfur (C? S) bond formation unveiled the mechanism of metal‐mediated alkyne insertion: a new pathway of C? S bond formation without preliminary ligand dissociation was revealed based on experimental and theoretical investigations. According to this pathway alkyne insertion into the metal–sulfur bond led to the formation of intermediate metal complex capable of direct C? S reductive elimination. In contrast, an intermediate metal complex formed through alkyne insertion through the traditional pathway involving preliminary ligand dissociation suffered from “improper” geometry configuration, which may block the whole catalytic cycle. A new catalytic system was developed to solve the problem of stereoselective S? S bond addition to internal alkynes and a cost‐efficient Ni‐catalyzed synthetic procedure is reported to furnish formation of target vinyl sulfides with high yields (up to 99 %) and excellent Z/E selectivity (>99:1).  相似文献   

14.
Inspired by the active‐site structure of the [NiFe] hydrogenase, we have computationally designed the iron complex [PtBu2NtBu2)Fe(CN)2CO] by using an experimentally ready‐made diphosphine ligand with pendant amines for the hydrogenation of CO2 to methanol. Density functional theory calculations indicate that the rate‐determining step in the whole catalytic reaction is the direct hydride transfer from the Fe center to the carbon atom in the formic acid with a total free energy barrier of 28.4 kcal mol?1 in aqueous solution. Such a barrier indicates that the designed iron complex is a promising low‐cost catalyst for the formation of methanol from CO2 and H2 under mild conditions. The key role of the diphosphine ligand with pendent amine groups in the reaction is the assistance of the cleavage of H2 by forming a Fe?Hδ????Hδ+?N dihydrogen bond in a fashion of frustrated Lewis pairs.  相似文献   

15.
Glycine (Gly) is incorporated in roughly half of all known peptaibiotic (nonribosomally biosynthesized antibiotic peptides of fungal origin) sequences and is the residue with the greatest conformational flexibility. The conformational space of Aib (α‐aminoisobutyric acid) is severely restricted by the second methyl group attached to the Cα atom. Most of the crystal structures containing Aib are N‐terminal protected. Deprotection of the N‐ or C‐terminus of peptides may alter the hydrogen‐bonding scheme and/or the structure and may facilitate crystallization. The structure reported here for glycyl‐α‐aminoisobutyrylglycyl‐α‐aminoisobutyric acid tert‐butyl ester, C16H30N4O5, describes the first N‐terminal‐unprotected (Gly‐Aib)n peptide. The achiral peptide could form an intramolecular hydrogen bond between the C=O group of Gly1 and the N—H group of Aib4. This hydrogen bond is found in all tetrapeptides and N‐terminal‐protected tripeptides containing Aib, apart from one exception. In the present work, this hydrogen bond is not observed (N...O = 5.88 Å). Instead, every molecule is hydrogen bonded to six other symmetry‐related molecules with a total of eight hydrogen bonds per molecule. The backbone conformation starts in the right‐handed helical region (and the left‐handed helical region for the inverted molecule) and reverses the screw sense in the last two residues.  相似文献   

16.
A mild and efficient C(sp2)?H nitration of 3‐substituted indoles, by using the economical and non‐toxic cobalt nitrate hexahydrate [Co(NO3)2 ? 6 H2O] as a catalyst and tert‐butyl nitrite (TBN) as the nitro source, is reported. This approach provides a unique methodology involving a site‐selective C?N bond formation for preparation of C‐2 substituted nitro indoles. Utilization of the tBoc as the removable directing group enhances the synthetic utility of the method.  相似文献   

17.
Density functional theory (DFT) is employed to: 1) propose a viable catalytic cycle consistent with our experimental results for the mechanism of chemically driven (CeIV) O2 generation from water, mediated by nonheme iron complexes; and 2) to unravel the role of the ligand on the nonheme iron catalyst in the water oxidation reaction activity. To this end, the key features of the water oxidation catalytic cycle for the highly active complexes [Fe(OTf)2(Pytacn)] (Pytacn: 1‐(2′‐pyridylmethyl)‐4,7‐dimethyl‐1,4,7‐triazacyclononane; OTf: CF3SO3?) ( 1 ) and [Fe(OTf)2(mep)] (mep: N,N′‐bis(2‐pyridylmethyl)‐N,N′‐dimethyl ethane‐1,2‐diamine) ( 2 ) as well as for the catalytically inactive [Fe(OTf)2(tmc)] (tmc: N,N′,N′′,N′′′‐tetramethylcyclam) ( 3 ) and [Fe(NCCH3)(MePy2CH‐tacn)](OTf)2 (MePy2CH‐tacn: N‐(dipyridin‐2‐yl)methyl)‐N′,N′′‐dimethyl‐1,4,7‐triazacyclononane) ( 4 ) were analyzed. The DFT computed catalytic cycle establishes that the resting state under catalytic conditions is a [FeIV(O)(OH2)(LN4)]2+ species (in which LN4=Pytacn or mep) and the rate‐determining step is the O?O bond‐formation event. This is nicely supported by the remarkable agreement between the experimental (ΔG=17.6±1.6 kcal mol?1) and theoretical (ΔG=18.9 kcal mol?1) activation parameters obtained for complex 1 . The O?O bond formation is performed by an iron(V) intermediate [FeV(O)(OH)(LN4)]2+ containing a cis‐FeV(O)(OH) unit. Under catalytic conditions (CeIV, pH 0.8) the high oxidation state FeV is only thermodynamically accessible through a proton‐coupled electron‐transfer (PCET) process from the cis‐[FeIV(O)(OH2)(LN4)]2+ resting state. Formation of the [FeV(O)(LN4)]3+ species is thermodynamically inaccessible for complexes 3 and 4 . Our results also show that the cis‐labile coordinative sites in iron complexes have a beneficial key role in the O?O bond‐formation process. This is due to the cis‐OH ligand in the cis‐FeV(O)(OH) intermediate that can act as internal base, accepting a proton concomitant to the O?O bond‐formation reaction. Interplay between redox potentials to achieve the high oxidation state (FeV?O) and the activation energy barrier for the following O?O bond formation appears to be feasible through manipulation of the coordination environment of the iron site. This control may have a crucial role in the future development of water oxidation catalysts based on iron.  相似文献   

18.
The thiourea S,S‐dioxide molecule is recognized as a zwitterion with a high dipole moment and an unusually long C? S bond. The molecule has a most interesting set of intermolecular interactions in the crystalline state—a relatively strong O???H? N hydrogen bond and very weak intermolecular C???S and N???O interactions. The molecule has Cs symmetry, and each oxygen atom is hydrogen‐bonded to two hydrogen atoms with O???H? N distances of 2.837 and 2.826 Å and angles of 176.61 and 158.38°. The electron density distribution is obtained both from Xray diffraction data at 110 K and from a periodic density functional theory (DFT) calculation. Bond characterization is made in terms of the analysis of topological properties. The covalent characters of the C? N, N? H, C? S, and S? O bonds are apparent, and the agreement on the topological properties between experiment and theory is adequate. The features of the Laplacian distributions, bond paths, and atomic domains are comparable. In a systematic approach, DFT calculations are performed based on a monomer, a dimer, a heptamer, and a crystal to see the effect on the electron density distribution due to the intermolecular interactions. The dipole moment of the molecule is enhanced in the solid state. The typical values of ρb and Hb of the hydrogen bonds and weak intermolecular C???S and N???O interactions are given. All the interactions are verified by the location of the bond critical point and its associated topological properties. The isovalue surface of Laplacian charge density and the detailed atomic graph around each atomic site reveal the shape of the valence‐shell charge concentration and provide a reasonable interpretation of the bonding of each atom.  相似文献   

19.
Electronic structure analysis of guanylthiourea (GTU) and its isomers has been carried out using quantum chemical methods. Two major tautomeric classes (thione and thiol) have been identified on the potential energy (PE) surface. In both the cases conjugation of pi‐electrons and intramolecular H‐bonds have been found to play a stabilizing role. Various isomers of GTU on its PE surface have been analyzed in two different groups (thione and thiol). The interconversion from the most stable thione conformer ( GTU‐1 ) to the most stable thiol conformer ( GTU‐t1 ) was found to take place via bimolecular process which involves protonation at sulfur atom of GTU‐1 followed by subsequent C? N bond rotation and deprotonation. The detailed analysis of the protonation has been carried out in gas phase and aqueous phase (using CPMC model). Sulfur atom (S1) was found to be the preferred protonation site (over N4) in GTU‐1 in gas phase whereas N4 was found to be the preferred site of protonation in aqueous medium. The mechanism of S‐alkylation reaction in GTU has also been studied. The formation of alkylated analogs of thiol isomers (alkylated guanylthiourea) is believed to take place via bimolecular process which involves alkyl cation attack at S atom followed by C? N bond rotation and deprotonation. The reactive intermediate RS(NH2)C? N? C(NH2)2+ belongs to the newly identified N(←L)2 class of species and provides the necessary dynamism for easy conversion of thione to thiol. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

20.
Well‐dispersed carbon‐coated or nitrogen‐doped carbon‐coated copper‐iron alloy nanoparticles (FeCu@C or FeCu@C?N) in carbon‐based supports are obtained using a bimetallic metal‐organic framework (Cu/Fe‐MOF‐74) or a mixture of Cu/Fe‐MOF‐74 and melamine as sacrificial templates and an active‐component precursor by using a pyrolysis method. The investigation results attest formation of Cu?Fe alloy nanoparticles. The obtained FeCu@C catalyst exhibits a catalytic activity with a half‐wave potential of 0.83 V for oxygen reduction reaction (ORR) in alkaline medium, comparable to that on commercial Pt/C catalyst (0.84 V). The catalytic activity of FeCu@C?N for ORR (Ehalf‐wave=0.87 V) outshines all reported analogues. The excellent performance of FeCu@C?N should be attributed to a change in the energy of the d‐band center of Cu resulting from the formation of the copper–iron alloy, the interaction between alloy nanoparticles and supports and N‐doping in the carbon matrix. Moreover, FeCu@C and FeCu@C?N show better electrochemical stability and methanol tolerance than commercial Pt/C and are expected to be widely used in practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号