首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To combat multidrug‐resistant Gram‐positive bacteria, new antimicrobials particularly those with novel mechanism of action are badly needed. Different with conventional antibiotics which are typical inhibitors, small‐molecule activators of bacterial ClpP represent a new class of antibiotics. No ClpP activator has been developed for clinical trial. Herein, we conducted a screening on our library of bengamide‐like ring‐opened analogues and found that L472‐2 possesses a low minimum inhibitory concentration (MIC) against S.aureus and shows no activity for ClpP activation in vitro, but it displayed reduced antibacterial activity against S. aureus with clpP deletion. In order to obtain bengamide analogues that activate ClpP in vitro as well as possess antibacterial activity, we perform further structural modifications starting from L472‐2 . Compound 37 remains the antimicrobial activity and activation of ClpP protein in vitro, which could be viewed as a new chemical scaffold for ClpP activators and worthy of further investigation.  相似文献   

2.
The antimicrobial properties of light is an area of increasing interest. This study investigates the sensitivity of the significant foodborne pathogen Listeria monocytogenes to selected wavelengths of visible light. Results demonstrate that exposure to wavelength region 400–450 nm, at sufficiently high dose levels (750 J cm?2), induced complete inactivation of a 5 log10 population. Exposure to wavelengths longer than 450 nm did not cause significant inactivation. Analysis of 10 nm bandwidths between 400 and 450 nm confirmed 405(±5) nm light to be most effective for the inactivation of L. monocytogenes, with a lesser bactericidal effect also evident at other wavelengths between 400 and 440 nm. Identification of the optimum bactericidal wavelength enabled the comparison of inactivation using 405(±5) nm filtered light and a 405 nm light‐emitting diode (LED) array (14 nm FWHM). Results demonstrate similar inactivation kinetics, indicating that the applied dose of 405 nm light is the important factor. Use of the 405 nm LED array for the inactivation of L. monocytogenes and other Listeria species resulted in similar kinetics, with up to 5 log10 reductions with a dose of 185 J cm?2. Comparative data for the 405 nm light inactivation of L. monocytogenes and other important foodborne pathogens, Escherichia coli, Salmonella enteritidis and Shigella sonnei, are also presented, with L. monocytogenes showing higher susceptibility to inactivation through 405 nm light exposure.  相似文献   

3.
The protonation features of two optically active 22‐membered hexaazamacrocycles possessing one ( L1 ) or two ( L2 ) (R,R)‐cyclohexane‐1,2‐diamine moieties have been studied by means of potentiometric 1H‐ and 13C‐NMR techniques. This study allows the determination of the basicity constants and the stepwise protonation sites. The presence of the cyclohexane decreases the protonation ability, and this effect can be explained in terms of conformational and electrostatic factors. Binding of different chiral dicarboxylates has been studied by potentiometry. Macrocycle L2 presents higher anion‐complexation equilibrium constants than L1 . The stability of the diastereoisomeric complexes depends on the pH, and the structures of the macrocycles and anions. Receptor L1 ⋅6 H+ shows moderate D ‐selectivity towards tartrate anion, whereas L2 ⋅6 H+ exhibits a good preference for N‐Ac‐D ‐aspartate. Both protonated L1 and L2 form strong complexes with N‐Ac‐glutamate, and the stoichiometry of the complex depends on the degree of protonation and the absolute configuration of the anion. For this last anion, both azamacrocycles exhibit a clear D ‐preference.  相似文献   

4.
The Zn inactive class of glyoxalase I (Glo1) metalloenzymes are typically homodimeric with two metal‐dependent active sites. While the two active sites share identical amino acid composition, this class of enzyme is optimally active with only one metal per homodimer. We have determined the X‐ray crystal structure of GloA2, a Zn inactive Glo1 enzyme from Pseudomonas aeruginosa. The presented structures exhibit an unprecedented metal‐binding arrangement consistent with half‐of‐sites activity: one active site contains a single activating Ni2+ ion, whereas the other contains two inactivating Zn2+ ions. Enzymological experiments prompted by the binuclear Zn2+ site identified a novel catalytic property of GloA2. The enzyme can function as a Zn2+/Co2+‐dependent hydrolase, in addition to its previously determined glyoxalase I activity. The presented findings demonstrate that GloA2 can accommodate two distinct metal‐binding arrangements simultaneously, each of which catalyzes a different reaction.  相似文献   

5.
In situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium–sulfur (Li‐S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial. Herein, we reveal the electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) in working Li‐S batteries that renders highly active electrocatalysts (CoSx). Electrochemical cycling induces the transformation from single‐crystalline Co4N to polycrystalline CoSx that are rich in active sites. This transformation propels all‐phase polysulfide‐involving reactions. Consequently, Co4N enables stable operation of high‐rate (10 C, 16.7 mA cm?2) and electrolyte‐starved (4.7 μL mgS?1) Li‐S batteries. The general concept of electrochemically induced sulfurization is verified by thermodynamic energetics for most of low‐valence metal compounds.  相似文献   

6.
A series of unsymmetrically substituted N‐heterocyclic carbene (NHC) precursors ( 1a , 1b , 1c , 1d , 1e ) were synthesized from the reaction of N‐phenylbenzimidazole with various alkyl halides. These compounds were used to synthesize NHC–silver(I) complexes ( 2a , 2b , 2c , 2d , 2e ). The five new 1‐phenyl‐3‐alkylbenzimidazolium salts ( 1a , 1b , 1c , 1d , 1e ) and their NHC–silver complexes ( 2a , 2b , 2c , 2d , 2e ) were characterized by the 1H NMR, 13C NMR and FT‐IR spectroscopic methods and elemental analysis techniques. Also, the two NHC–silver complexes 2b and 2c were characterized by single‐crystal X‐ray crystallography, which confirmed the linear C―Ag―Cl arrangements. The antibacterial activities of the NHC precursor and NHC–silver complexes were tested against three Gram‐positive bacterial strains (Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus) and three Gram‐negative bacterial strains (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) using the microdilution broth method. The NHC–silver complexes showed higher antibacterial activity than the NHC precursors. In addition, silver complexes 2a , 2b , 2c , 2d showed high antibacterial activity against the Gram‐positive bacteria L. monocytogenes and S. aureus compared to the standard, tetracycline. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The quinazoline‐type ligand 2‐(4‐diethylamino‐2‐hydroxyphenyl)‐4‐methyl‐1,2‐dihydroquinazoline 3‐oxide ( HL 1 ; H is the deprotonatable hydrogen) was prepared. Two 2‐D supramolecular complexes [Cu2( L 2 )2(NO3)2] ( 1 ) and [Ni2( L 2 )2(CH3COO)2] ( 2 ) ( L 2 = 1‐(2‐{[(E)‐(4‐diethylamino‐2‐hydroxybenzylidene]amino} phenyl)ethanone oxime) were synthesized using HL 1 and characterized by elemental analysis, spectroscopic methods, and single‐crystal X‐ray diffraction studies. It revealed that 1 had coordinated two nitrate ions whereas 2 had acetate ions. In the crystal structures, six‐coordinated Cu (II) complex 1 formed an infinite 2‐D and X‐shaped 3‐D supramolecular frameworks. Simultaneously, Ni (II) complex 2 assembled into wavy 2‐D networks. Furthermore, electrochemical properties and antimicrobial activities of all compounds were as well investigated. Afterwards, the electrophilic and nucleophilic attack sites identified by electrostatic potential (ESP) calculations confirmed that hydrogen bonds were observed in the optimized structure of the crystal, and the closest contact between the active atoms of both complexes was confirmed through Hirshfeld surface analysis and time‐dependent density functional theory (TD‐DFT) calculations.  相似文献   

8.
The facile synthesis of a porous carbon material that is doped with iron‐coordinated nitrogen active sites (FeNC‐70) is demonstrated by following an inexpensive synthetic pathway with a zeolitic imidazolate framework (ZIF‐70) as a template. To emphasize the possibility of tuning the porosity and surface area of the resulting carbon materials based on the structure of the parent ZIF, two other ZIFs, that is, ZIF‐68 and ZIF‐69, are also synthesized. The resulting active carbon material that is derived from ZIF‐70, that is, FeNC‐70, exhibits the highest BET surface area of 262 m2 g?1 compared to the active carbon materials that are derived from ZIF‐68 and ZIF‐69. The HR‐TEM images of FeNC‐70 show that the carbon particles have a bimodal structure that is composed of a spherical macroscopic pore (about 200 nm) and a mesoporous shell. X‐ray photoelectron spectroscopy (XPS) reveals the presence of Fe‐N‐C moieties, which are the primary active sites for the oxygen‐reduction reaction (ORR). Quantitative estimation by using EDAX analysis reveals a nitrogen content of 14.5 wt. %, along with trace amounts of iron (0.1 wt. %), in the active FeNC‐70 catalyst. This active porous carbon material, which is enriched with Fe‐N‐C moieties, reduces the oxygen molecule with an onset potential at 0.80 V versus NHE through a pathway that involves 3.3–3.8 e? under acidic conditions, which is much closer to the favored 4 e? pathway for the ORR. The onset potential of FeNC‐70 is significantly higher than those of its counterparts (FeNC‐68 and FeNC‐69) and of other reported systems. The FeNC‐based systems also exhibit much‐higher tolerance towards MeOH oxidation and electrochemical stability during an accelerated durability test (ADT). Electrochemical analysis and structural characterizations predict that the active sites for the ORR are most likely to be the in situ generated N? FeN2+2/C moieties, which are distributed along the carbon framework.  相似文献   

9.
Reactions between 5‐ferrocenylisophthalic dichloride and 1,2‐bis(o‐aminophenoxy)ethane yield 1:1‐ and 2:2‐cyclization products with amide linkages, which are marked as L1 and L2 , respectively. The crystal structure of the 2:2‐macrocycle L2 is determined by X‐ray single crystal structure analysis. Interestingly, L2 affords a folded conformation due to the intermolecular π–π interaction between two isophthaloyl groups, so as to stabilize the marcocylic conformation. The electrochemical anion sensing studies of L1 and L2 show that they have a good ability to recognize H2PO4, and the 2:2‐cyclization products ( L2 ) with two ferrocene groups, more anion binding sites, and larger cavities, give better electrochemical anion recognition results than L1 .  相似文献   

10.
The coordination chemistry of metalated container molecules is currently attracting much interest, because the properties of such compounds are often different from those of their constituent components. By adjusting the size and form of the binding cavity it is often possible to coordinate coligands in unusual coordination modes, to activate and transform small molecules, or to stabilize reactive intermediates. Such compounds also allow for an interplay of molecular recognition and transition‐metal catalysis, and for the construction of more effective enzyme mimics. Consequently, a number of research groups are involved in the development of new supporting ligands that create confined environments about active metal coordination sites. This research report briefly reviews recent progress in this field including the results of my own group. It is shown that N‐functionalized derivatives of Robson‐type macrocyclic hexaaza‐dithiophenolate ligands form bioctahedral transition metal complexes of the type [(LR)M2(μ‐L′)]+ (M = Mn, Fe, Co, Ni, Zn) with an overall calixarene‐like structure. These complexes are amongst the first prototypes for polynuclear complexes with well defined binding cavities. Since the active coordination site L′ is accessible for a wide range of exogenous coligands, the [(LR)M2(μ‐L′)] complexes exhibit a rich coordination chemistry. It is demonstrated that the presence of the binding cavity influences many properties of the binuclear [(LR)MII2]2+ complex fragments, including color, molecular and electronic structure, hydrogen bonding interactions, redox potential, complex stability, and reactivity. The unusual properties of the complexes can be traced back to complementary host‐guest interactions and the distinct size and form of the binding pocket of the [(LMe)M2]2+ fragments.  相似文献   

11.
Some low‐lying states of the HAlS+ and HSAl+ cations have been studied for the first time by large‐scale theoretical calculations using three methods: complete active space self‐consistent field (CASSCF), complete active second‐order perturbation theory (CASPT2), and density functional theory Becke's three‐parameter hybrid function with the nonlocal correlation of Lee–Yang–Parr (B3LYP) with the contracted atomic natural orbital (ANO‐L) and cc‐pVTZ basis sets. The geometries of all stationary points along the potential energy surfaces (PESs) were optimized at the CASSCF/ANO‐L and B3LYP/cc‐pVTZ levels. The ground and the first excited states of linear HAlS+ are predicted to be X2Π and A2Σ+ states, respectively. For the linear HSAl+ structure, the first excited state is A2Σ+. The X2Π state of linear HSAl+ is a second‐order saddle point, because it has two imaginary frequencies. Two bent global minima M1 and M2 were found along the 12A′ and 12A″ PESs, respectively. The CASPT2/ANO‐L potential energy curves of isomerization reactions were calculated as a function of HAlS bond angle. According to our calculations, the ground‐state HAlS+ is linear, whereas the ground‐state HSAl+ is bent. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

12.
The synthesis of a series of NiII–salen‐based complexes with the general formula of [Ni(H2L)] (H4L=R2N,N′‐bis[R1‐5‐(4′‐benzoic acid)salicylidene]; H4L1: R2=2,3‐diamino‐2,3‐dimethylbutane and R1=H; H4L2: R2=1,2‐diaminoethane and R1=tert‐butyl and H4L3: R2=1,2‐diaminobenzene and R1=tert‐butyl) is presented. Their electronic structure and self‐assembly was studied. The organic ligands of the salen complexes are functionalized with peripheral carboxylic groups for driving molecular self‐assembly through hydrogen bonding. In addition, other substituents, that is, tert‐butyl and diamine bridges (2,3‐diamino‐2,3‐dimethylbutane, 1,2‐diaminobenzene or 1,2‐diaminoethane), were used to tune the two‐dimensional (2D) packing of these building blocks. Density functional theory (DFT) calculations reveal that the spatial distribution of the LUMOs is affected by these substituents, in contrast with the HOMOs, which remain unchanged. Scanning tunneling microscopy (STM) shows that the three complexes self‐assemble into three different 2D nanoarchitectures at the solid–liquid interface on graphite. Two structures are porous and one is close‐packed. These structures are stabilized by hydrogen bonds in one dimension, while the 2D interaction is governed by van der Waals forces and is tuned by the nature of the substituents, as confirmed by theoretical calculations. As expected, the total dipolar moment is minimized  相似文献   

13.
A novel naphthalenediol‐based bis(salamo)‐type tetraoxime compound (H4L) was designed and synthesized. Two new supramolecular complexes, [Cu3(L)(μ‐OAc)2] and [Co3(L)(μ‐OAc)2(MeOH)2]·4CHCl3 were synthesized by the reaction of H4L with Cu(II) acetate dihydrate and Co(II) acetate dihydrate, respectively, and were characterized by elemental analyses and X‐ray crystallography. In the Cu(II) complex, Cu1 and Cu2 atoms located in the N2O2 sites, and are both penta‐coordinated, and Cu3 atom is also penta‐coordinated by five oxygen atoms. All the three Cu(II) atoms have geometries of slightly distorted tetragonal pyramid. In the Co(II) complex, Co1 and Co3 atoms located in the N2O2 sites, and are both penta‐coordinated with geometries of slightly distorted triangular bipyramid and distorted tetragonal pyramid, respectively, while Co2 atom is hexa‐coordinated by six oxygen atoms with a geometry of slightly distorted octahedron. These self‐assembling complexes form different dimensional supramolecular structures through inter‐ and intra‐molecular hydrogen bonds. The coordination bond cleavages of the two complexes have occurred upon the addition of the H+, and have reformed again via the neutralization effect of the OH?. The changes of the two complexes response to the H+/OH? have observed in the UV–Vis and 1H NMR spectra.  相似文献   

14.
Ni‐catalyzed cross‐coupling of unactivated secondary alkyl halides with alkylboranes provides an efficient way to construct alkyl–alkyl bonds. The mechanism of this reaction with the Ni/ L1 ( L1 =transN,N′‐dimethyl‐1,2‐cyclohexanediamine) system was examined for the first time by using theoretical calculations. The feasible mechanism was found to involve a NiI–NiIII catalytic cycle with three main steps: transmetalation of [NiI( L1 )X] (X=Cl, Br) with 9‐borabicyclo[3.3.1]nonane (9‐BBN)R1 to produce [NiI( L1 )(R1)], oxidative addition of R2X with [NiI( L1 )(R1)] to produce [NiIII( L1 )(R1)(R2)X] through a radical pathway, and C? C reductive elimination to generate the product and [NiI( L1 )X]. The transmetalation step is rate‐determining for both primary and secondary alkyl bromides. KOiBu decreases the activation barrier of the transmetalation step by forming a potassium alkyl boronate salt with alkyl borane. Tertiary alkyl halides are not reactive because the activation barrier of reductive elimination is too high (+34.7 kcal mol?1). On the other hand, the cross‐coupling of alkyl chlorides can be catalyzed by Ni/ L2 ( L2 =transN,N′‐dimethyl‐1,2‐diphenylethane‐1,2‐diamine) because the activation barrier of transmetalation with L2 is lower than that with L1 . Importantly, the Ni0–NiII catalytic cycle is not favored in the present systems because reductive elimination from both singlet and triplet [NiII( L1 )(R1)(R2)] is very difficult.  相似文献   

15.
A novel Schiff base ligand, namely 2,2′‐((1E,1′E)‐(1,3‐phenylenebis(azanylylidene))bis(methanylylidene))diphenol (H2L), was synthesized by condensation of m‐phenylenediamine and 2‐hydroxybenzaldehyde (in 1:2 ratio). Series of complexes were obtained from the reaction of La(III), Er(III) and Yb(III) chlorides with H2L. The ligand and complexes were characterized using elemental analysis, infrared, 1H NMR, UV–visible and mass spectroscopies, magnetic susceptibility and conductivity measurements and thermal analysis. Infrared and 1H NMR spectra indicated the coordination of the azomethine nitrogens and deprotonated phenolic oxygen atoms in a tetradentate manner (ONNO). The thermal behaviour of the complexes was studied from ambient temperature to 1000°C. The complexes were found to have water molecules of hydration and coordinated water molecules. The complexes were found to possess high biological activities against various organisms compared to the free ligand (Gram‐positive bacteria Staphylococcus aureus and Bacillus subtilis, Gram‐negative bacteria Salmonella sp., Escherichia coli and Pseudomonas aeruginosa and fungi Aspergillus fumigatus and Candida albicans). The more effective and probable binding modes between H2L with different active sites of colon cancer (PDB code: 2hq6) and lung cancer (PDB code: 1x2j) receptors were investigated using molecular docking studies.  相似文献   

16.
Emission quenching of [Ru(bpy)2(4, 4'-dcbpy)] (PF6)2 (1) by benzenamine,4-[2-[5-[4-[4-dimethylamino]phenyl]-4,5-di-hydro-1-phenyl-1H-pyrazol-3-yl]-ethenyl]-N,N-dimetyl (2) or 1, 5-diphenyl-3-(2-phenothiazine)-2-pyrazoline (3) was observed. Measurements of the emission decay of 1 before and after addition of 2 or 3 by single photon counting technique con-finned the observations. The emission quenching of 1 by 2 or 3 was submitted to Stern-Volmer equation. It was calculated that the quenching rate constants (kq) are 5.5 × 109(mol/L)-1s-1 for 2 and 4.0 × 109(mol/L)-1s-1 for 3, respectively. These results indicated a character of dynamic quenching process. The singlet-state of 2 or 3 was also quenched by 1. The quenching behaviors did not conform to the Stern- Volmer equation and involved both static and dynamic quenching processes. The apparent quenching rate constant (kapp) was calculated to be 3 × 109 (mol/L)-1 for the interaction of excited 2 with 1, and 1.2 × 109 (mol/L)-1 for that of excited 3 wit  相似文献   

17.
Four new macrocyclic compounds with thiophene ( L1 and L2 ) and furan ( L3 and L4 ) rings were synthesized and characterized by IR, 1H NMR, 13C NMR, and Q-TOF spectral data. Macrocyclic amides ( L1 , L2 , L3 , and L4 ) were tested for ion transportation with Na+ and K+ ions, and also, antimicrobial activities were investigated against the Gram-negative Escherichia coli ATCC 25922, Gram-positive Staphylococcus aureus ATCC 25923, Gram-negative Listeria monocytogenes ATCC 19115, Gram-negative Salmonella typhimurium ATCC 14028, Bacillus cereus bacteria, and Candida albicans ATCC 10231 for all amides.  相似文献   

18.
A series of chiral Schiff bases ( L 1 – L 5 ) with different substituents in the salicylidenyl unit were prepared from condensation of 3‐aryl‐5‐ tert ‐butylsalicylaldehyde derivatives and optically active amino alcohols. Bromination of 3‐phenyl‐5‐ tert ‐butylsalicylaldehyde gave an unexpected product 3‐(4‐bromophenyl)‐5‐bromosalicylaldehyde, from which the corresponding Schiff base ligands L 6 and L 7 , derived from (S)‐valinol and (S)‐ tert ‐leucinol, respectively, were prepared. Ligands L 1 – L 7 were applied to the vanadium‐catalyzed asymmetric oxidation of aryl methyl sulfides. Under the optimal conditions, the oxidation of the thioanisole with H2O2 as oxidant in CH2Cl2 catalyzed by VO(acac)2‐ L 1 – L 7 gives good yields (74–83%) with moderate enantioselectivity (58–77% ee). Ligand L 7 , containing a 4‐bromophenyl group on the 3‐position and a Br atom on the 5‐position of the salicylidenyl moiety, displays an 80–90% ee for vanadium‐catalyzed oxidation of methyl 4‐bromophenyl sulfide and methyl 2‐naphthyl sulfide. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Using the completed active space second‐order perturbation (CASPT2) method, valence and Rydberg excited states of CH2 molecule are probed with the large atomic natural orbital (ANO‐L) basis set. Five states are optimized and the geometric parameters are in good agreement with the available data in literatures, furthermore, the state of 21B1 is obtained for the first time. Valence and Rydberg excited states of CH2 are also calculated for the vertical transitions with the ANO‐L+ basis set that is constructed by adding a set of 1s1p1d Rydberg orbitals into the ANO‐L basis set. Two Rydberg states of the p?3A2 and r?3B1 at 9.88 and 10.50 eV are obtained for the first time, and the 3a1 → 3dyz nature of the state p?3A2 and the 3a1 → dx2?y2 nature of the state r?3B1 are confirmed. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Listeria monocytogenes is a facultative intracellular Gram-positive bacterium that is widely distributed in the environment. Despite being pathogenic at the species level, L. monocytogenes in fact comprises a diversity of strains from pathogenic ones that can result in disease and/or mortality to others that are relatively avirulent. The main goal of the current study was to answer the question on whether enhanced binding or attachment of L. monocytogenes to inert surfaces bears any relationship to pathogenicity in food-borne isolates. To answer this question, the nanoscale adhesion forces of eight L. monocytogenes strains that vary in their pathogenicity levels to a model surface of silicon nitride were quantified using atomic force microscopy. The strains used were the highly pathogenic (EGDe, 874, 1002, ATCC 19115), the intermediate pathogenic (ATCC 19112, ATCC 19118), and the non pathogenic (ATCC 15313 and HCC25). Our results indicate that the average nanoscale adhesion (in nN) and the 50% lethal dose (LD50) of strain virulence quantified in mice are logarithmically correlated according to: (nN) = −0.032 ln (LD50) + 1.040, r2 = 0.96. Such correlation indicates that nanoscale adhesion could potentially be used as a design criterion to distinguish between virulent and avirulent L. monocytogenes strains. Finally, stronger adhesion of virulent strains to inert surfaces modeled by silicon nitride might be a way for pathogenic strains to survive better in the environment and thus increase their likelihood of infecting animals or humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号