首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concept of planar hypercoordinate (e.g., penta- and hexacoordinate) carbons is intriguing [Exner, K.; Schleyer, P. v. R. Science 2000, 290, 1937] as it is neither compatible with the standard rule of three-dimensional chemical bonding nor with the maximum tetracoordination. Herein we undertake a comprehensive study of the planar tetra- (ptC), penta- (ppC), and hexacoordinate carbon (phC) by covering the whole family of carbon-boron mixed clusters C(m=1-4)B(n=4-8) and their anions. The potential energy surface of every carbon-boron cluster is sampled by using the basin-hopping global search algorithm coupled with ab initio geometry optimization. A large number of planar tetra-, penta-, and hexacoordinate carbon (local-minimum) structures are obtained. Several structures such as the phC consisting of C2B5, C2B5(-), etc. are reported for the first time. In particular, a ptC corresponding to the global minimum of CB4 is revealed, which appears to be highly stable for future synthesis. The boron-centered isomers are generally the more stable structures for planar multicoordinate carbons (ptC, ppC, and phC). The planar tetra-, penta-, and hexacoordinate boron are the prevalent structural motifs in low-lying isomers of the carbon-boron clusters. However, stability of the ptC and ppC units can be reinforced over the boron-centered isomers by attaching proper hydrocarbon unit -(CH)n- to form the so-called "hyparenes" [Wang, Z. X.; Schleyer, P. v. R. Science 2001, 292, 2465]). A new hyparene molecule is suggested for future synthesis of novel planar hypercoordinate carbon compounds.  相似文献   

2.
采用密度泛函理论(DFT), 在B3LYP/6-311+G**水平上, 研究了三类包含平面四配位碳原子(ptC)和平面五配位碳原子(ppC)的硼碳化合物. 这三类新型化合物是由C3B2H4(包含ptC)、CB4H2(包含ptC)和CB5H2(包含ppC)三种稳定结构和—CHCH—单元连接起来而得到的. 在理论上探讨了这些新型的硼碳化合物的成键特征, 光谱性质以及芳香性. 研究结果表明: 包含ptC和ppC原子的能量最低的结构, 在不受对称面限制的条件下, 具有C2v对称性的顺式立体构型比具有反式平面构型的化合物稳定. 计算的核独立化学位移(NICS)显示, 这些新型化合物的三元环中心有强的芳香性. 计算最稳定硼碳化合物的ptC和ppC原子的Wiberg键指数(WBIs)表明ptC和ppC的成键遵循八隅规则.  相似文献   

3.
Planar tetracoordinate carbon (ptC) arrangements can be achieved by employing multiple substituents based on beryllium, despite its rather weak pi-acceptor ability. A variety of ptC-containing examples, some with more than one ptC, have been designed computationally by elaborating the planar C(BeH) 4 (2-) prototype at B3LYP/6-311++G(3df,2p) and MP2/6-311++G(3df,2p) levels of theory for some small ptC representatives. The prototype prefers a D(2h) paramagnetic triplet ground state due to Hund's rule, rather than a singlet. The highly polarized C-Be bonding weakens the rigidity of the tetrahedral carbon in T(d)C(BeH) 4 enormously, and the enhancement of both C-Be and Be 4 peripheral covalent bonding exerted by the extra electrons stabilizes the ptC eventually. The delocalization of the two p pi electrons is only modest, but their density on the most electronegative carbon atom helps stabilize the ptC arrangement. This is in contrast to the conventional strategy to delocalize p(pi) lone pairs for stabilizing the ptC arrangement. Various strategies to achieve neutral derivatives with ptCs are demonstrated.  相似文献   

4.
Several potentially experimentally accessible lithiated heterocyclic and heteroatom compounds with planar tetracoordinate carbons (ptC) have been predicted computationally. These utilize the strong electron-donating ability and the bridging proclivity of lithium to achieve the ptC preferences. As the p orbitals on the central carbons are only partially occupied, their electronic structures are similar to those of the related carbenes, e.g. imidazole-2-ylidene, rather than to the other ptC compounds such as dilithiocyclopropane.  相似文献   

5.
The structure, bonding, and stability of clusters with the empirical formula CE5? (E=Al–Tl) have been analyzed by means of high‐level computations. The results indicate that, whereas aluminum and gallium clusters have C2v structures with a planar tetracoordinate carbon (ptC), their heavier homologues prefer three‐dimensional C4v forms with a pentacoordinate carbon center over the ptC one. The reason for such a preference is a delicate balance between the interaction energy of the fifth E atom with CE4 and the distortion energy. Moreover, bonding analysis shows that the ptC systems can be better described as CE4?, with 17‐valence electrons interacting with E. The ptC core in these systems exhibits double aromatic (both σ and π) behavior, but the σ contribution is dominating.  相似文献   

6.
Proposing new valence electron counting rules and new structural motifs are both very important in chemistry. In this work, we unexpectedly found that by introducing a π‐type skeleton YCCY (Y = Al/Ga/In/Tl), a total of sixteen novel planar tetracoordinate heavier group 14 species, that is, ptM (M = Si/Ge/Sn/Pb) in neutral, can be designed as global minima. The underlying bonding situation contrasts sharply both with the well‐known 18ve‐ptC and the limited 18ve‐ptM, for which there is little multiple bonding character within the skeleton. The fact that each YCCY (Y = Al/Ga/In/Tl) can stabilize all heavier group 14 atoms in a planar tetracoordinate fashion strongly demonstrates the universality of such a π‐type skeleton. The present work firmly demonstrates that introducing the π‐type ligand skeleton can effectively enrich the planar tetracoordinate chemistry with the heavier group atoms.  相似文献   

7.
A new series of unsaturated pure and boron‐substituted hydrocarbons containing a perfect planar tetracoordinate carbon (ptC) have been proposed by performing density functional computations. The ptC is effectively stabilized through three‐dimensional delocalization of ptC's lone pair into π‐conjugated systems, by utilizing a new strategy opening a brand new way of designing ptC structures. Compared to previously proposed ptC‐containing hydrocarbon cage compound, a neutral hydrocarbon designed here might be a more viable target for synthetic attempts. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

8.
The achievement of the rule-breaking planar hypercoordinate motifs (carbon and other elements) is mainly attributed to a practical electronic stabilization mechanism, where the bonding of the central atom pz π electrons is a crucial issue. We have demonstrated that strong multiple bonds between the central atom and partial ligands can be an effective approach to explore stable planar hypercoordinate species. A set of planar tetra-, penta- and hexa-coordinate silicon clusters were herein found to be the lowest-energy structure, which can be viewed as decorating SiO3 by alkali metals in the MSiO3, M2SiO3 and M3SiO3+ (M=Li, Na) clusters. The strong charge transfer from M atoms to SiO3 effectively results in [M]+SiO32−, [M2]2+SiO32− and [M3]3+SiO32− salt complexes, where the Si−O multiple bonding and structural integrity of the Benz-like SiO3 framework is maintained better than the corresponding SiO32− motifs. The bonding between M atoms and SiO3 motif is best described as M+ forming a few dative interactions by employing its vacant s, p, and high-lying d orbitals. These considerable M←SiO3 interactions and Si−O multiple bonding give rise to the highly stable planar hypercoordinate silicon clusters.  相似文献   

9.
Sets of boron rings enclosing planar hypercoordinate group 14 elements (ABn(n-8); A = group 14 element; n = 6-10) are designed systematically based on geometrical and electronic fit principles: the size of a boron ring must accommodate the central atom comfortably. The electronic structures of the planar minima with hypercoordinate group 14 elements are doubly aromatic with six pi and six in-plane radial MO systems (radial MOs are comprised of boron p orbitals pointing toward the ring center). This is confirmed by induced magnetic field and nucleus-independent chemical shift (NICS) computations. The weakness of the "partial" A-B bonds is compensated by their unusually large number. Although a C7v pyramidal SiB8 structure is more stable than the D8h isomer, Born-Oppenheimer molecular dynamics simulations show the resistance of the D8h local minimum against deformation and isomerization. Such evidence of the viability of the boron ring minima with group 14 elements encourages experimental realization.  相似文献   

10.
In this study, we analyzed CB(4) and its cation, CB(4)(+). Using CCSD(T)/aug-cc-pVQZ//CCSD(T)/aug-cc-pVTZ quantum-chemical calculations, we found that the neutral molecule is in accord with the results of Boldyrev and Wang, having a C(s) global minimum with a planar tricoordinate carbon structure, contradicting previous studies. In contrast, CB(4)(+), which was reported by an early mass spectroscopic study, has a planar tetracoordinate carbon (ptC) atom, demonstrating that a modification of the charge can promote the stabilization of a ptC structure.  相似文献   

11.
In cluster studies, the isoelectronic replacement strategy has been successfully used to introduce new elements into a known structure while maintaining the desired topology. The well-known penta-atomic 18 valence electron (ve) species and its Al/Si or Al/Si+ isoelectronically replaced clusters CAl3Si, CAl2Si2, , and , all possess the same anti-van't Hoff/Le Bel skeletons, that is, nontraditional planar tetracoordinate carbon (ptC) structure. In this article, however, we found that such isoelectronic replacement between Si and Al does not work for the 16ve-CAl4 with the traditional van't Hoff/Le Bel tetrahedral carbon (thC) and its isoelectronic derivatives CAl3X (X = Ga/In/Tl). At the level of CCSD(T)/def2-QZVP//B3LYP/def2-QZVP, none of the global minima of the 16ve mono-Si-containing clusters CAl2SiX+ (X = Al/Ga/In/Tl) maintains thC as the parent CAl4 does. Instead, X = Al/Ga globally favors an unusual ptC structure that has one long C─X distance yet with significant bond index value, and X = In/Tl prefers the planar tricoordinate carbon. The frustrated formation of thC in these clusters is ascribed to the CSi bonding that prefers a planar fashion. Inclusion of chloride ion would further stabilize the ptC of CAl2SiAl+ and CAl2SiGa+. The unexpectedly disclosed CAl2SiAl+ and CAl2SiGa+ represent the first type of 16ve-cationic ptCs with multiple bonds. © 2019 Wiley Periodicals, Inc.  相似文献   

12.
Using a new charge-compensation strategy, we designed neutral molecules with perfectly planar C(C)(4)-type tetracoordinate carbon arrangements (ptC) employing DFT computations. These designs, based on the planar preference of methane dications, replace two remote carbons in spiroalkaplanes by borons or two remote hydrogens by BH(3) groups; the two formally anionic boron units which result compensate the formal double positive charge on the central ptC's. The LUMOs correspond to the "wasted" lone pair HOMOs of the alkaplanes. As compared to the latter, pi occupancies on the central carbon are much smaller (less than 0.7e), and the IPs are much larger. The newly predicted compounds utilize all of the electrons more effectively. There are no lone pairs, and the ptC-C bond lengths are ca. 1.50 A. The Wiberg bond index sums of the ptC's are near 3.2, and the boron sums are close to 4.  相似文献   

13.
C(CH3)5+ is the first reported example of a five‐coordinate carbon atom bound only to separate (that is, monodentate) carbon ligands. This species illustrate the limits of carbon bonding, exhibiting Lewis‐violating “electron‐deficient bonds” between the hypercoordinate carbon and its methyl groups. Though not kinetically persistent under standard laboratory conditions, its dissociation activation barriers may permit C(CH3)5+ fleeting existence near 0 K.  相似文献   

14.
A density functional theory investigation on a series of S-shaped or cyclic (BnEmSi)2H2 molecules (E = B, C, Si; n = 3-6; m = 1, 2) containing double planar tetra-, penta-, and hexacoordinate silicons has been presented in this work. Further theoretical evidence is provided to support the previously proposed structural pattern to host planar hypercoordinate silicons in small aromatic molecules.  相似文献   

15.
Using density functional calculations, we demonstrate that the planarity of the nonclassical planar tetracoordinate carbon (ptC) arrangement can be utilized to construct new families of flat, tubular, and cage molecules which are geometrically akin to graphenes, carbon nanotubes, and fullerenes but have fundamentally different chemical bonds. These molecules are assembled with a single type of hexagonal blocks called starbenzene (D6h C6Be6H6) through hydrogen‐bridge bonds that have an average bonding energy of 25.4–33.1 kcal mol?1. Starbenzene is an aromatic molecule with six π electrons, but its carbon atoms prefer ptC arrangements rather than the planar trigonal sp2 arrangements like those in benzene. Various stability assessments indicate their excellent stabilities for experimental realization. For example, one starbenzene unit in an infinite two‐dimensional molecular sheet lies on average 154.1 kcal mol?1 below three isolated linear C2Be2H2 (global minimum) monomers. This value is close to the energy lowering of 157.4 kcal mol?1 of benzene relative to three acetylene molecules. The ptC bonding in starbenzene can be extended to give new series of starlike monocyclic aromatic molecules (D4h C4Be4H42?, D5h C5Be5H5?, D6h C6Be6H6, D7h C7Be7H7+, D8h C8Be8H82?, and D9h C9Be9H9?), known as starenes. The starene isomers with classical trigonal carbon sp2 bonding are all less stable than the corresponding starlike starenes. Similarly, lithiated C5Be5H5 can be assembled into a C60‐like molecule. The chemical bonding involved in the title molecules includes aromaticity, ptC arrangements, hydrogen‐bridge bonds, ionic bonds, and covalent bonds, which, along with their unique geometric features, may result in new applications.  相似文献   

16.
C(CH3)5+ is the first reported example of a five‐coordinate carbon atom bound only to separate (that is, monodentate) carbon ligands. This species illustrate the limits of carbon bonding, exhibiting Lewis‐violating “electron‐deficient bonds” between the hypercoordinate carbon and its methyl groups. Though not kinetically persistent under standard laboratory conditions, its dissociation activation barriers may permit C(CH3)5+ fleeting existence near 0 K.  相似文献   

17.
The structures and bonding of CB6-, C2B5-, and CB62- are investigated by photoelectron spectroscopy and ab initio calculations. It is shown that the global minimum structures for these systems are distorted heptacyclic structures. The previously reported hexacyclic structures with a hypercoordinate central carbon atom are found to be significantly higher in energy and were not populated under current experimental conditions. The reasons why carbon avoids hypercoordination in these planar carbon-boron clusters are explained through detailed chemical-bonding analyses.  相似文献   

18.
Local environments and valence electron counts primarily determine the electronic states and physical properties of transition‐metal complexes. For example, square‐planar coordination geometries found in transition‐metal oxometalates such as cuprates are usually associated with the d8 or d9 electron configuration. In this work, we address an unusual square‐planar single oxoanionic [IrO4]4? species, as observed in Na4IrO4 in which IrIV has a d5 configuration, and characterize the chemical bonding through experiments and by ab initio calculations. We find that the IrIV center in ground‐state Na4IrO4 has square‐planar coordination geometry because of the weak Coulomb repulsion of the Ir‐5d electrons. In contrast, in its 3d counterpart Na4CoO4, the CoIV center is tetrahedrally coordinated because of strong electron correlation. Na4IrO4 may thus serve as a simple yet important example to study the ramifications of Hubbard‐type Coulomb interactions on local geometries.  相似文献   

19.
The atoms in molecule theory shows that the spiropentadiene dication has a planar tetracoordinate carbon (ptC) atom stabilized mainly through the sigma bonds and this atom has a negative charge. The bonds to the ptC atom have less covalent character than the central carbon from neutral spiropentadiene. The total positive charge is spread along the structure skeleton. The analysis of the potential energy surface shows that the dication spiropentadiene has a 2.3 kcal/mol activation barrier for ring opening.  相似文献   

20.
Using previously proposed C(BH)2(CH)2 (16, 17) and C(CH)2B2 (22) systems with a central planar tetracoordinate carbon (ptC) atom linking two three-membered rings as building blocks, a series of stable structures containing two and three ptC centers within a molecule have been designed and computationally studied with the DFT (B3LYP/6-311+G) method. Inclusion of a carbon atom ligated with pi-accepting and sigma-donating boron centers into at least one aromatic ring is critical for stabilization of a planar structure. A square pyramidal configuration at tetracoordinate carbon may be achieved in appropriately strained molecules such as [3.3.3.3]tetraborafenestrane 45 and others by surrounding the carbon with boron-centered ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号