首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report the synthesis of three new complexes related to the achiral [Ru(tpm)(dppz)py]2+ cation (tpm=tripyridazole methane, dppz=dipyrido[3,2‐a:2′,3′‐c]phenazine, py=pyridine) that contain an additional single functional group on the monodentate ancillary pyridyl ligand. Computational calculations indicate that the coordinated pyridyl rings are in a fixed orientation parallel to the dppz axis, and that the electrostatic properties of the complexes are very similar. DNA binding studies on the new complexes reveal that the nature and positioning of the functional group has a profound effect on the binding mode and affinity of these complexes. To explore the molecular and structural basis of these effects, circular dichroism and NMR studies on [Ru(tpm)(dppz)py]Cl2 with the octanucleotides d(AGAGCTCT)2 and d(CGAGCTCG)2, were carried out. These studies demonstrate that the dppz ligand intercalates into the G2–A3 step, with {Ru(tpm)py} in the minor groove. They also reveal that the complex intercalates into the binding site in two possible orientations with the pyridyl ligand of the major conformer making close contact with terminal base pairs. We conclude that substitution at the 2‐ or 3‐position of the pyridine ring has little effect on binding, but that substitution at the 4‐position drastically disrupts intercalative binding, particularly with a 4‐amino substituent, because of steric and electronic interactions with the DNA. These results indicate that complexes derived from these systems have the potential to function as sequence‐specific light‐switch systems.  相似文献   

3.
A new class of cyclometalated AuIII complexes containing various bidentate C‐deprotonated C^N and cis‐chelating bis(N‐heterocyclic carbene) (bis‐NHC) ligands has been synthesized and characterized. These are the first examples of AuIII complexes supported by cis‐chelating bis‐NHC ligands. [Au(C^N)(bis‐NHC)] complexes display emission in solutions under degassed condition at room temperature with emission maxima (λmax) at 498–633 nm and emission quantum yields of up to 10.1 %. The emissions are assigned to triplet intraligand (IL) π→π* transitions of C^N ligands. The AuIII complex containing a C^N (C‐deprotonated naphthalene‐substituted quinoline) ligand with extended π‐conjugation exhibits prompt fluorescence and phosphorescence of comparable intensity with λmax at 454 and 611 nm respectively. With sulfonate‐functionalized bis‐NHC ligand, four water‐soluble luminescent AuIII complexes, including those displaying both fluorescence and phosphorescence, were prepared. They show similar photophysical properties in water when compared with their counterparts in acetonitrile. The long phosphorescence lifetime of the water‐soluble AuIII complex with C‐deprotonated naphthalene‐substituted quinoline ligand renders it to function as ratiometric sensor for oxygen. Inhibitory activity of one of these water‐soluble AuIII complexes towards deubiquitinase (DUB) UCHL3 has been investigated; this complex also displayed a significant inhibitory activity with IC50 value of 0.15 μM .  相似文献   

4.
5.
6.
The bi‐exponential emission decay of [Ru(L)2dppz]2+ (L=N,N′‐diimine ligand) bound to DNA has been studied as a function of polynucleotide sequence, enantiomer, and nature of L (phenanthroline vs. bipyridine). The lifetimes (τi) and pre‐exponential factors (αi) depend on all three parameters. With [poly(dA‐dT)]2, the variation of αi with [Nu]/[Ru] has little dependence on L for Λ‐[Ru(L)2dppz]2+ but a substantial dependence for Δ‐[Ru(L)2dppz]2+. With [poly(dG‐dC)]2, by contrast, the Λ‐enantiomer αi values depend strongly on the nature of L, whereas those of the Δ‐enantiomer are relatively unaffected. DNA‐bound linked dimers show similar photophysical behaviour. The lifetimes are identified with two geometries of minor‐groove intercalated [Ru(L)2dppz]2+, resulting in differential water access to the phenazine nitrogen atoms. Interplay of cooperative and anti‐cooperative binding resulting from complex–complex and complex–DNA interactions is responsible for the observed variations of αi with binding ratio. [Ru(phen)2dppz]2+ emission is quenched by guanosine in DMF, which may further rationalise the shorter lifetimes observed with guanine‐rich DNA.  相似文献   

7.
8.
The synthesis of two new luminescent dinuclear IrIII–RuII complexes containing tetrapyrido[3,2‐a:2′,3′‐c:3′′,2′′‐h:2′′′,3′′′‐j]phenazine (tpphz) as the bridging ligand is reported. Unlike many other complexes incorporating cyclometalated IrIII moieties, these complexes display good water solubility, allowing the first cell‐based study on IrIII–RuII bioprobes to be carried out. Photophysical studies indicate that emission from each complex is from a RuII excited state and both complexes display significant in vitro DNA‐binding affinities. Cellular studies show that each complex is rapidly internalised by HeLa cells, in which they function as luminescent nuclear DNA‐imaging agents for confocal microscopy. Furthermore, the uptake and nuclear targeting properties of the complex incorporating cyclometalating 2‐(4‐fluorophenyl)pyridine ligands around its IrIII centre is enhanced in comparison to the non‐fluorinated analogue, indicating that fluorination may provide a route to promote cell uptake of transition‐metal bioprobes.  相似文献   

9.
We report the synthesis of a new class of thermally stable and strongly luminescent cyclometalated iridium(III) complexes 1 – 6 , which contain the 2‐acetylbenzo[b]thiophene‐3‐olate (bt) ligand, and their application in organic light‐emitting diodes (OLEDs). These heteroleptic iridium(III) complexes with bt as the ancillary ligand have a decomposition temperature that is 10–20 % higher and lower emission self‐quenching constants than those of their corresponding complexes with acetylacetonate (acac). The luminescent color of these iridium(III) complexes could be fine‐tuned from orange (e.g., 2‐phenyl‐6‐(trifluoromethyl)benzo[d]thiazole (cf3bta) for 4 ) to pure red (e.g., lpt (Hlpt=4‐methyl‐2‐(thiophen‐2‐yl)quinolone) for 6 ) by varying the cyclometalating ligands (C‐deprotonated C^N). In particular, highly efficient OLEDs based on 6 as dopant (emitter) and 1,3‐bis(carbazol‐9‐yl)benzene (mCP) as host that exhibit stable red emission over a wide range of brightness with CIE chromaticity coordinates of (0.67, 0.33) well matched to the National Television System Committee (NTSC) standard have been fabricated along with an external quantum efficiency (EQE) and current efficiency of 9 % and 10 cd A?1, respectively. A further 50 % increase in EQE (>13 %) by replacing mCP with bis[4‐(6H‐indolo[2,3‐b]quinoxalin‐6‐yl)phenyl]diphenylsilane (BIQS) as host for 6 in the red OLED is demonstrated. The performance of OLEDs fabricated with 6 (i.e., [(lpt)2Ir(bt)]) was comparable to that of the analogous iridium(III) complex that bore acac (i.e., [(lpt)2Ir(acac)]; 6 a in this work) [Adv. Mater.­ 2011 , 23, 2981] fabricated under similar conditions. By using ntt (Hnnt=3‐hydroxynaphtho[2,3‐b]thiophen‐2‐yl)(thiophen‐2‐yl)methanone) ligand, a substituted derivative of bt, the [(cf3bta)2Ir(ntt)] was prepared and found to display deep red emission at around 700 nm with a quantum yield of 12 % in mCP thin film.  相似文献   

10.
A series of luminescent platinum(II) complexes of tridentate 1,3‐bis(N‐alkylbenzimidazol‐2′‐yl)benzene (bzimb) ligands has been synthesized and characterized. One of these platinum(II) complexes has been structurally characterized by X‐ray crystallography. Their electrochemical, electronic absorption, and luminescence properties have been investigated. Computational studies have been performed on this class of complexes to elucidate the origin of their photophysical properties. Some of these complexes have been utilized in the fabrication of organic light‐emitting diodes (OLEDs) by using either vapor deposition or spin‐coating techniques. Chloroplatinum(II)? bzimb complexes that are functionalized at the 5‐position of the aryl ring, [Pt(R‐bzimb)Cl], not only show tunable emission color but also exhibit high current and external quantum efficiencies in OLEDs. Concentration‐dependent dual‐emissive behavior was observed in multilayer OLEDs upon the incorporation of pyrenyl ligand into the Pt(bzimb) system. Devices doped with low concentrations of the complexes gave rise to white‐light emission, thereby representing a unique class of small‐molecule, platinum(II)‐based white OLEDs.  相似文献   

11.
12.
A novel diarylethene‐based iridium(III) complex was synthesized as a phosphorescence probe for monitoring living cells. The switchable phosphorescence complex in solution and within living cells was controlled by two distinguishable visible‐light irradiations, which suggests that this complex can be developed as a promising probe with weak photodamage for biological samples.  相似文献   

13.
A series of luminescent cyclometalated platinum(II) complexes of N^C^N ligands [N^C^N=2,6‐bis(benzoxazol‐2′‐yl)benzene (bzoxb), 2,6‐bis(benzothiazol‐2′‐yl)benzene (bzthb), and 2,6‐bis(N‐alkylnaphthoimidazol‐2′‐yl)benzene (naphimb)] has been synthesized and characterized. Two of the platinum(II) complexes have been structurally characterized by X‐ray crystallography. Their electrochemical, electronic absorption, and luminescence properties have been investigated. In dichloromethane solution at room temperature, the cyclometalated N^C^N platinum(II) complexes exhibited rich luminescence with well‐resolved vibronic‐structured emission bands. The emission energies of the complexes are found to be closely related to the electronic properties of the N^C^N ligands. By varying the electronic properties of the cyclometalated ligands, a fine‐tuning of the emission energies can be achieved, as supported by computational studies. Multilayer organic light‐emitting devices have been prepared by utilizing two of these platinum(II) complexes as phosphorescent dopants, in which a saturated yellow emission with Commission International de I′Eclairage coordinates of (0.50, 0.49) was achieved.  相似文献   

14.
A new class of phosphorescent cyclometalated iridium(III)–polyamine complexes [{Ir(N^C)2}n(bPEI)](PF6)n (bPEI=branched poly(ethyleneimine), average Mw=25 kDa, n=15.6–27.4; HN^C=2‐phenylpyridine Hppy ( 1 a ), 2‐((1,1′‐biphenyl)‐4‐yl)pyridine Hpppy ( 2 a ), 2‐phenylquinoline Hpq ( 3 a ), 2‐phenylbenzothiazole Hbt ( 4 a ), 2‐(1‐naphthyl)benzothiazole Hbsn ( 5 a )) and [Ir(N^C)2(en)](PF6) (en=ethylenediamine; HN^C=Hppy ( 1 b ), Hpppy ( 2 b ), Hpq ( 3 b ), Hbt ( 4 b ), Hbsn ( 5 b )) have been synthesized and characterized. The X‐ray crystal structure of complex 5 b was also determined. All of these complexes showed a reversible iridium(IV/III) oxidation couple at +1.01 to +1.26 V and a quasi‐reversible ligand‐based reduction couple at ?1.54 to ?2.08 V (versus SCE). Upon photoexcitation, the complexes displayed intense and long‐lived green to orange–red emission in fluid solutions at room temperature and in low‐temperature glass. Lipophilicity measurements indicated that bPEI played a dominant role in the polar nature of complexes 1 a – 5 a , thus rendering them very soluble in aqueous solutions. Inductively coupled plasma–mass spectrometry (ICP‐MS) and confocal laser scanning microscopy (CLSM) data indicated that an energy‐requiring process, such as endocytosis, was involved in the cellular uptake of all of the complexes. In addition, the cytotoxicity of the complexes toward human cervix epithelioid carcinoma (HeLa) and human embryonic kidney 293T (HEK293T) cell‐lines has been evaluated by the 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. The DNA‐binding properties of complex 5 a have been investigated by gel‐retardation assays and the polyplexes that were formed from this complex with plasmid DNA (pDNA) were studied by zeta‐potential measurements and particle‐size estimation. Furthermore, complex 5 a was grafted with poly(ethylene glycol) (PEG, average Mw=2 kDa) to different extents, thereby yielding the phosphorescent copolymers PEG12.3g‐5 a , PEG25.4g‐5 a , and PEG62.1g‐5 a . Interestingly, these copolymers showed enhanced transfection activity, as revealed by in vitro transfection experiments with tissue‐culture‐based luciferase assays.  相似文献   

15.
Using a new mononuclear “building block,” for the first time, a dinuclear RuII(dppn) complex and a heteroleptic system containing both RuII(dppz) and RuII(dppn) moieties are reported. The complexes, including the mixed dppz/dppn system, are 1O2 sensitizers. However, unlike the homoleptic dppn systems, the mixed dppz/dppn complex also displays a luminescence “switch on” DNA light‐switch effect. In both cisplatin sensitive and resistant human ovarian carcinoma lines the dinuclear complexes show enhanced uptake compared to their mononuclear analogue. Thanks to a favorable combination of singlet oxygen generation and cellular uptake properties all three of the new complexes are phototoxic and display potent activity against chemotherapeutically resistant cells.  相似文献   

16.
Homocysteine (Hcy) and cysteine (Cys) are two important kinds of amino acids in human bodies. Herein, we synthesized an iridium(III) complex‐functionalized poly(N‐isopropylacrylamide) and its hydrogel, which could be used as the excellent phosphorescent bioprobe for sensing Hcy and Cys. Their detection can be realized in aqueous system through the variations in absorption and photoluminescence spectra. Furthermore, living cell imaging experiments demonstrate that the phosphorescent bioprobe is membrane permeable and can monitor the changes of Hcy and Cys within living cells. In addition, the probe is also thermoresponsive, and its photoluminescence intensified with increasing temperature. These results suggests that this bioprobe has promising application in biomedical fields.  相似文献   

17.
In view of the growing interest for the synthesis of metal complexes and their interaction with DNA, we have synthesized and characterized two complexes containing ruthenium as metal center. The complexes are of the type [Ru(dppz)L4](ClO4)2 where L are biologically important ligands such as pyrazole and dimethylpyrazole. The characterization of these complexes is done by 1H NMR, 13C NMR, elemental analysis and mass spectroscopy. The interaction of these complexes with CT DNA was monitored and binding constants were determined using absorption and fluorescence spectroscopy. The mode of binding was found to be intercalative for both complexes and was determined using hydrodynamic viscosity studies. The complexes were further studied for photocleavage studies with supercoiled plasmid pBR322 DNA.  相似文献   

18.
A series of metal–organic chromophores containing RuII or IrIII were studied for the luminometric detection of nitroaromatic compounds, including trinitrotoluene (TNT). These complexes display long‐lived, intense photoluminescence in the visible region and are demonstrated to serve as luminescent sensors for nitroaromatics. The solution‐based behavior of these photoluminescent molecules has been studied in detail in order to identify the mechanism responsible for metal‐to‐ligand charge‐transfer (MLCT) excited state quenching upon addition of TNT and 2,4‐dinitrotoluene (2,4‐DNT). A combination of static and dynamic spectroscopic measurements unequivocally confirmed that the quenching was due to a photoinduced electron transfer (PET) process. Ultrafast transient absorption experiments confirmed the formation of the TNT radical anion product following excited state electron transfer from these metal complexes. Reported for the first time, photoluminescence quenching realized through ink‐jet printing and solid‐state titrations was used for the solid‐state detection of TNT; achieving a limit‐of‐quantitation (LOQ) as low as 5.6 ng cm?2. The combined effect of a long‐lived excited state and an energetically favorable driving force for the PET process makes the RuII and IrIII MLCT complexes discussed here particularly appealing for the detection of nitroaromatic volatiles and related high‐energy compounds.  相似文献   

19.
The synthesis of the cyclen derivative H4 L 1 ?2 HBr containing four 2‐hydroxybenzamide groups is described. The spectroscopic properties of the LnIII conplexes of L 1 (Ln=Gd, Tb, Yb, and Eu) reveal changes of the UV/VIS‐absorption, circular‐dichroism‐absorption, luminescence, and circularly polarized luminescence spectra. It is shown that at least two metal‐complex species are present in solution, whose relative amounts are pH dependent. At pH>8.0, an intense long‐lived emission is observed (for [Tb L 1 ] and [Yb L 1 ]), while at pH<8.0, a weaker, shorter‐lived species predominates. Unconventional LnIII emitters (Pr, Nd, Sm, Dy, and Tm) were sensitized in basic solution, both in the VIS and in the near‐IR, to measure the emission of these ions.  相似文献   

20.
Binuclear polypyridine ruthenium compounds have been shown to slowly intercalate into DNA, following a fast initial binding on the DNA surface. For these compounds, intercalation requires threading of a bulky substituent, containing one RuII, through the DNA base‐pair stack, and the accompanying DNA duplex distortions are much more severe than with intercalation of mononuclear compounds. Structural understanding of the process of intercalation may greatly gain from a characterisation of the initial interactions between binuclear RuII compounds and DNA. We report a structural NMR study on the binuclear RuII intercalator Λ,Λ‐B (Λ,Λ‐[μ‐bidppz(bipy)4Ru2]4+; bidppz=11,11′‐bis(dipyrido[3,2‐a:2′,3′‐c]phenazinyl, bipy = 2,2′‐bipyridine) mixed with the palindromic DNA [d(CGCGAATTCGCG)]2. Threading of Λ,Λ‐B depends on the presence and length of AT stretches in the DNA. Therefore, the latter was selected to promote initial binding, but due to the short stretch of AT base pairs, final intercalation is prevented. Structural calculations provide a model for the interaction: Λ,Λ‐B is trapped in a well‐defined surface‐bound state consisting of an eccentric minor‐groove binding. Most of the interaction enthalpy originates from electrostatic and van der Waals contacts, whereas intermolecular hydrogen bonds may help to define a unique position of Λ,Λ‐B. Molecular dynamics simulations show that this minor‐groove binding mode is stable on a nanosecond scale. To the best of our knowledge, this is the first structural study by NMR spectroscopy on a binuclear Ru compound bound to DNA. In the calculated structure, one of the positively charged Ru2+ moieties is near the central AATT region; this is favourable in view of potential intercalation as observed by optical methods for DNA with longer AT stretches. Circular dichroism (CD) spectroscopy suggests that a similar binding geometry is formed in mixtures of Λ,Λ‐B with natural calf thymus DNA. The present minor‐groove binding mode is proposed to represent the initial surface interactions of binuclear RuII compounds prior to intercalation into AT‐rich DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号