首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The trivalent metal cations Al3+, Cr3+, and Fe3+ were each introduced, together with Sc3+, into MIL‐100(Sc,M) solid solutions (M=Al, Cr, Fe) by direct synthesis. The substitution has been confirmed by powder X‐ray diffraction (PXRD) and solid‐state NMR, UV/Vis, and X‐ray absorption (XAS) spectroscopy. Mixed Sc/Fe MIL‐100 samples were prepared in which part of the Fe is present as α‐Fe2O3 nanoparticles within the mesoporous cages of the MOF, as shown by XAS, TGA, and PXRD. The catalytic activity of the mixed‐metal catalysts in Lewis acid catalysed Friedel–Crafts additions increases with the amount of Sc present, with the attenuating effect of the second metal decreasing in the order Al>Fe>Cr. Mixed‐metal Sc,Fe materials give acceptable activity: 40 % Fe incorporation only results in a 20 % decrease in activity over the same reaction time and pure product can still be obtained and filtered off after extended reaction times. Supported α‐Fe2O3 nanoparticles were also active Lewis acid species, although less active than Sc3+ in trimer sites. The incorporation of Fe3+ into MIL‐100(Sc) imparts activity for oxidation catalysis and tandem catalytic processes (Lewis acid+oxidation) that make use of both catalytically active framework Sc3+ and Fe3+. A procedure for using these mixed‐metal heterogeneous catalysts has been developed for making ketones from (hetero)aromatics and a hemiacetal.  相似文献   

2.
The conversion of biomass into valuable carbon composites as efficient non‐precious metal oxygen‐reduction electrocatalysts is attractive for the development of commercially viable polymer electrolyte membrane fuel‐cell technology. Herein, a versatile iron–tannin‐framework ink coating strategy is developed to fabricate cellulose‐derived Fe3C/Fe‐N‐C catalysts using commercial filter paper, tissue, or cotton as a carbon source, an iron–tannin framework as an iron source, and dicyandiamide as a nitrogen source. The oxygen reduction performance of the resultant Fe3C/Fe‐N‐C catalysts shows a high onset potential (i.e. 0.98 V vs the reversible hydrogen electrode (RHE)), and large kinetic current density normalized to both geometric electrode area and mass of catalysts (6.4 mA cm?2 and 32 mA mg?1 at 0.80 V vs RHE) in alkaline condition. This method can even be used to prepare efficient catalysts using waste carbon sources, such as used polyurethane foam.  相似文献   

3.
A facile method is reported to form a honeycomb‐like porous nanomaterial by intercalation of iron nitrate using nature silk sericin (SS) as nitrogen and carbon source. A series of Fe2O3 nanoparticles anchored on Fe2O3‐N‐doped graphite carbon electrocatalysts (SS‐Fe) were synthesized, exhibits well‐defined pore structure and excellent oxygen evolution reaction (OER) catalytic activities. Among these materials, SS‐Fe‐0.5 shows the best performance, the overpotential of SS‐Fe‐0.5 at 10 mA · cm–2 is 440 mV (vs. RHE) and the Tafel slope is only 68 mV · dec–1. The results indicate that it is promising to the preparation of carbon catalyst materials using natural, renewable and abundant resources for electrocatalysis.  相似文献   

4.
Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal–organic framework encapsulating a trinuclear FeIII2FeII complex (denoted as Fe3) within the channels, a well‐defined nitrogen‐doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII/CoII) via synthesizing isostructural trinuclear‐complex precursors (Fe2Zn/Fe2Co), namely the “heteroatom modulator approach”, is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal–nitrogen moiety, clearly identified by direct transmission electron microscopy and X‐ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal–metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.  相似文献   

5.
Single‐atom catalysts have demonstrated their superiority over other types of catalysts for various reactions. However, the reported nitrogen reduction reaction single‐atom electrocatalysts for the nitrogen reduction reaction exclusively utilize metal–nitrogen or metal–carbon coordination configurations as catalytic active sites. Here, we report a Fe single‐atom electrocatalyst supported on low‐cost, nitrogen‐free lignocellulose‐derived carbon. The extended X‐ray absorption fine structure spectra confirm that Fe atoms are anchored to the support via the Fe‐(O‐C2)4 coordination configuration. Density functional theory calculations identify Fe‐(O‐C2)4 as the active site for the nitrogen reduction reaction. An electrode consisting of the electrocatalyst loaded on carbon cloth can afford a NH3 yield rate and faradaic efficiency of 32.1 μg h?1 mgcat.?1 (5350 μg h?1 mgFe?1) and 29.3 %, respectively. An exceptional NH3 yield rate of 307.7 μg h?1 mgcat.?1 (51 283 μg h?1 mgFe?1) with a near record faradaic efficiency of 51.0 % can be achieved with the electrocatalyst immobilized on a glassy carbon electrode.  相似文献   

6.
A bifunctional oxygen electrocatalyst composed of iron carbide (Fe3C) nanoparticles encapsulated by nitrogen doped carbon sheets is reported. X‐ray photoelectron spectroscopy and X‐ray absorption near edge structure revealed the presence of several kinds of active sites (Fe?Nx sites, N doping sites) and the modulated electron structure of nitrogen doped carbon sheets. Fe3C@N‐CSs shows excellent oxygen evolution and oxygen reduction catalytic activity owing to the modulated electron structure by encapsulated Fe3C core via biphasic interfaces electron interaction, which can lower the free energy of intermediate, strengthen the bonding strength and enhance conductivity. Meanwhile, the contribution of the Fe?Nx sites, N doping sites and the effect of Fe3C core for the electrocatalytic oxygen reaction is originally revealed. The Fe3C@N‐CSs air electrode‐based zinc‐air battery demonstrates a high open circuit potential of 1.47 V, superior charge‐discharge performance and long lifetime, which outperforms the noble metal‐based zinc‐air battery.  相似文献   

7.
Fe‐Co‐N‐C electrocatalysts have proven superior to their counterparts (e.g. Fe‐N‐C or Co‐N‐C) for the oxygen reduction reaction (ORR). Herein, we report on a unique strategy to prepare Fe‐Co‐N‐C?x (x refers to the pyrolysis temperature) electrocatalysts which involves anion‐exchange of [Fe(CN)6]3? into a cationic CoII‐based metal‐organic framework precursor prior to heat treatment. Fe‐Co‐N‐C‐900 exhibits an optimal ORR catalytic performance in an alkaline electrolyte with an onset potential (Eonset: 0.97 V) and half‐wave potential (E1/2: 0.86 V) comparable to that of commercial Pt/C (Eonset=1.02 V; E1/2=0.88 V), which outperforms the corresponding Co‐N‐C‐900 sample (Eonset=0.92 V; E1/2=0.84 V) derived from the same MOF precursor without anion‐exchange modification. This is the first example of Fe‐Co‐N‐C electrocatalysts fabricated from a cationic CoII‐based MOF precursor that dopes the Fe element via anion‐exchange, and our current work provides a new entrance towards MOF‐derived transition‐metal (e.g. Fe or Co) and nitrogen‐codoped carbon electrocatalysts with excellent ORR activity.  相似文献   

8.
Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (M‐NPs) have been reproducibly obtained by facile, rapid (3 min), and energy‐saving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal–carbonyl precursors [Mx(CO)y] in the ionic liquid (IL) 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIm][BF4]). This MWI synthesis is compared to UV‐photolytic (1000 W, 15 min) or conventional thermal decomposition (180–250 °C, 6–12 h) of [Mx(CO)y] in ILs. The MWI‐obtained nanoparticles have a very small (<5 nm) and uniform size and are prepared without any additional stabilizers or capping molecules as long‐term stable M‐NP/IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active and easily recyclable catalysts for the biphasic liquid–liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product) (mol Ru)?1 h?1 and 884 (mol product) (mol Rh)?1 h?1 and give almost quantitative conversion within 2 h at 10 bar H2 and 90 °C. Catalyst poisoning experiments with CS2 (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of Ru‐NPs.  相似文献   

9.
Exploring low‐cost and high‐performance nonprecious metal catalysts (NPMCs) for oxygen reduction reaction (ORR) in fuel cells and metal–air batteries is crucial for the commercialization of these energy conversion and storage devices. Here we report a novel NPMC consisting of Fe3C nanoparticles encapsulated in mesoporous Fe‐N‐doped carbon nanofibers, which is synthesized by a cost‐effective method using carbonaceous nanofibers, pyrrole, and FeCl3 as precursors. The electrocatalyst exhibits outstanding ORR activity (onset potential of ?0.02 V and half‐wave potential of ?0.140 V) closely comparable to the state‐of‐the‐art Pt/C catalyst in alkaline media, and good ORR activity in acidic media, which is among the highest reported activities of NPMCs.  相似文献   

10.
Incorporation of monatomic 2p ligands into the core of iron–sulfur clusters has been researched since the discovery of interstitial carbide in the FeMo cofactor of Mo‐dependent nitrogenase, but has proven to be a synthetic challenge. Herein, two distinct synthetic pathways are rationalized to install nitride ligands into targeted positions of W‐Fe‐S clusters, generating unprecedented nitride‐ligated iron–sulfur clusters, namely [(Tp*)2W2Fe64‐N)2S6L4]2? (Tp*=tris(3,5‐dimethyl‐1‐pyrazolyl)hydroborate(1?), L=Cl? or Br?). 57Fe Mössbauer study discloses metal oxidation states of WIV2FeII4FeIII2 with localized electron distribution, which is analogous to the mid‐valent iron centres of FeMo cofactor at resting state. Good agreement of Mössbauer data with the empirical linear relationship for Fe–S clusters indicates similar ligand behaviour of nitride and sulfide in such clusters, providing useful reference for reduced nitrogen in a nitrogenase‐like environment.  相似文献   

11.
An advanced novel magnetic ionic liquid based on imidazolium tagged with ferrocene, a supported ionic liquid, is introduced as a recyclable heterogeneous catalyst. Catalytic activity of the novel nanocatalyst was investigated in one‐pot three‐component reactions of various aldehydes, malononitrile and 2‐naphthol for the facile synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions without additional co‐catalyst or additive in air. For this purpose, we firstly synthesized and investigated 1‐(4‐ferrocenylbutyl)‐3‐methylimidazolium acetate, [FcBuMeIm][OAc], as a novel basic ferrocene‐tagged ionic liquid. This ferrocene‐tagged ionic liquid was then linked to silica‐coated nano‐Fe3O4 to afford a novel heterogeneous magnetic nanocatalyst, namely [Fe3O4@SiO2@Im‐Fc][OAc]. The synthesized novel catalyst was characterized using 1H NMR, 13C NMR, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, and transmission and field emission scanning electron microscopies. Combination of some unique characteristics of ferrocene and the supported ionic liquid developed the catalytic activity in a simple, efficient, green and eco‐friendly protocol. The catalyst could be reused several times without loss of activity.  相似文献   

12.
We report the synthesis of ionic liquid‐functionalized mesoporous silica nanoparticles ([pmim]FeCl4/MSNs) via a method of post‐grafting on parent MSNs. This hybrid material was characterized using scanning and transmission electron microscopies, energy‐dispersive X‐ray spectroscopy, nitrogen adsorption–desorption analysis, Fourier transform infrared spectroscopy, powder X‐ray diffraction and thermal analyses. The material was utilized as an efficient heterogeneous catalyst for the synthesis of N ,N ′‐diaryl‐substituted formamidines through the reaction of triethyl orthoformate with arylamines under solvent‐free conditions. The catalyst was recovered easily and reused several times without significant loss of its catalytic activity.  相似文献   

13.
Electrocatalysts for both the oxygen reduction and evolution reactions (ORR and OER) are vital for the performances of rechargeable metal–air batteries. Herein, we report an advanced bifunctional oxygen electrocatalyst consisting of porous metallic nickel‐iron nitride (Ni3FeN) supporting ordered Fe3Pt intermetallic nanoalloy. In this hybrid catalyst, the bimetallic nitride Ni3FeN mainly contributes to the high activity for the OER while the ordered Fe3Pt nanoalloy contributes to the excellent activity for the ORR. Robust Ni3FeN‐supported Fe3Pt catalysts show superior catalytic performance to the state‐of‐the‐art ORR catalyst (Pt/C) and OER catalyst (Ir/C). The Fe3Pt/Ni3FeN bifunctional catalyst enables Zn–air batteries to achieve a long‐term cycling performance of over 480 h at 10 mA cm−2 with high efficiency. The extraordinarily high performance of the Fe3Pt/Ni3FeN bifunctional catalyst makes it a very promising air cathode in alkaline electrolyte.  相似文献   

14.
This study describes a self‐doping and additive‐free strategy for the synthesis of metal‐nitrogen‐doped porous carbon materials (CMs) via carbonizing well‐tailored precursors, metal‐containing ionic liquids (M‐ILs). The organic skeleton in M‐ILs serves as both carbon and nitrogen sources, while metal ions acts as porogen and metallic dopants. A high nitrogen content, appropriate content of metallic species and hierarchical porosity synergistically endow the resultant CMs (MIBA‐M‐T) as effective electrocatalysts for the oxygen reduction reaction (ORR). MIBA‐Fe‐900 with a high specific surface area of 1567 m2 g?1 exhibits an activity similar to that of Pt/C catalyst, a higher tolerance to methanol than Pt/C, and long‐term durability. This work supplies a simple and convenient route for the preparation of metal‐containing carbon electrocatalysts.  相似文献   

15.
Titanium was incorporated in ionic liquid based periodic mesoporous organosilica to prepare a nanostructured catalyst (Ti@PMO‐IL) with high activity. Procedure for the synthesis of Ti@PMO‐IL was followed according the simultaneous hydrolysis and condensation of alkylimidazolium ionic liquid, tetramethoxysilane (TMOS) and tetrabutylorthotitanate (TBOT) where a surfactant template was used together with a simple acid‐based catalytic aproach. N2 adsorption isotherm of the Ti@PMO‐IL was studied to measure its mean pore volume, pore size distribution and specific surface area. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was applied to identify the chemical bonds present in Ti@PMO‐IL. The morphology of this nanomaterial was investigated by scanning electron microscopy (SEM). Transmission electron microscopy (TEM) image was used to study mesoporosity and structure order of the catalyst. The catalytic activity of Ti@PMO‐IL was then studied and found to be efficient and reusable to catalyze Hantzsch reaction.  相似文献   

16.
Magnetic carbon nanotube‐supported imidazolium ionic liquid (CNT‐Fe3O4‐IL) was synthesized and investigated using various characterization techniques, including Fourier transform infrared and Raman spectroscopies, X‐ray diffraction, vibrating sample magnetometry, scanning and transmission electron microscopies, and thermogravimetric and differential thermal analyses. In order to synthesize the CNT‐Fe3O4‐IL nanocomposites, Fe3O4‐decorated multi‐walled CNTs were modified with 1‐methyl‐3‐(3‐trimethoxysilylpropyl)‐1H‐imidazol‐3‐ium chloride. This catalytic system was found to be a highly stable, active, reusable and solid‐phase catalyst for the synthesis of 2‐aminothiazoles via the one‐pot reaction of ketone, thiourea and N‐bromosuccinimide under mild conditions. Immobilized magnetic ionic liquid catalysis combines the advantages of ionic liquid media with magnetic solid support nanomaterials which enables the application of nanotechnology and green chemistry in chemical processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The bimetallic title complex, [CuFe(CN)5(C12H30N6O2)(NO)] or [Cu(L)Fe(CN)5(NO)] [where L is 1,8‐bis(2‐hydroxy­ethyl)‐1,3,6,8,10,13‐hexa­aza­cyclo­tetra­decane], has a one‐dimensional zigzag polymeric –Cu(L)–NC–Fe(NO)(CN)3–CN–Cu(L)– chain, in which the CuII and FeII centres are linked by two CN groups. In the complex, the CuII ion is coordinated by four N atoms from the L ligand [Cu—N(L) = 1.999 (2)–2.016 (2) Å] and two cyanide N atoms [Cu—N = 2.383 (2) and 2.902 (3) Å], and has an elongated octahedral geometry. The FeII centre is in a distorted octahedral environment, with Fe—N(nitroso) = 1.656 (2) Å and Fe—C(CN) = 1.938 (3)–1.948 (3) Å. The one‐dimensional zigzag chains are linked to form a three‐dimensional network via N—H⋯N and O—H⋯N hydrogen bonds.  相似文献   

18.
In the present work, an innovative leach proof nanocatalyst based on dendritic fibrous nanosilica (DFNS) modified with ionic liquid loaded Fe3O4 NPs and CuI salts was designed and applied for the rapid synthesis of imidazo[1,2‐a]pyridines from the reaction of phenyl acetylene, 2‐aminopyridine, and aldehydes in aqueous medium. The structure of the synthesized nanocatalyst was studied by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FT‐IR), flame atomic absorption spectroscopy (FAAS), energy‐dispersive X‐ray (EDX), and X‐ray diffraction (XRD), vapor–liquid–solid (VLS), and adsorption/desorption analysis (Brunauer–Emmett–Teller [BET] equation) instrumental techniques. CuI/Fe3O4NPs@IL‐KCC‐1 with high surface area (225 m2 g?1) and porous structure not only exhibited excellent catalytic activity in aqueous media but also, with its good stability, simply recovered by an external magnet and recycled for eight cycles without significant loss in its intrinsic activity. Higher catalytic activity of CuI/Fe3O4NPs@IL‐KCC‐1 is due to exceptional dendritic fibrous structure of KCC‐1 and the ionic liquid groups that perform as strong anchors to the loaded magnetic nanoparticles (MNPs) and avoid leaching them from the pore of the nanocatalyst. Green reaction media, shorter reaction times, higher yields (71–97%), easy workup, and no need to use the chromatographic column are the advantages of the reported synthetic method.  相似文献   

19.
Aqueous–ionic liquid (A–IL) biphasic systems have been examined in terms of deuterated water, acid, and IL cation and anion mutual solubilities in the upper (water‐rich, in mole fraction) and lower phase of aqueous/IL biphasic systems at ambient temperature. The biphasic mixtures were composed of deuterated acids of various concentrations (mainly DCl, DNO3, and DClO4 from 10?2 to 10?4 M ) and five ionic liquids of the imidazolium family with a hydrophobic anion (CF3SO2)2N?, that is, [C1Cnim][Tf2N], (n=2, 4, 6, 8 and 10). The analytical techniques applied were 1H NMR, 19F NMR, Karl–Fischer titration, pH potentiometry for IL cations and anions, and water and acid determination. The effects of the ionic strength (μ=0.1 M NaCl and NaNO3 as well as μ=0.1 M , 0.2 M and 0.4 M NaClO4, according to the investigated acid), the nature of the IL cation, and the nature of the mineral acid on the solubilities of the (D2O, D+, Tf2N?, C1Cnim+) entities in the lower or upper phases were determined. The addition of sodium perchlorate was found to enhance the Tf2N? solubility while inhibiting the solubility of the ionic liquid cation. Differences in IL cation and anion solubilities of up to 42 mM were evidenced. The consequences for the characterization of the aqueous biphasic system, the solvent extraction process of the metal ions, and the ecological impact of the ILs are discussed.  相似文献   

20.
Non‐precious Fe/N co‐modified carbon electrocatalysts have attracted great attention due to their high activity and stability in oxygen reduction reaction (ORR). Compared to iron‐free N‐doped carbon electrocatalysts, Fe/N‐modified electrocatalysts show four‐electron selectivity with better activity in acid electrolytes. This is believed relevant to the unique Fe–N complexes, however, the Fe–N structure remains unknown. We used o,m,p‐phenylenediamine as nitrogen precursors to tailor the Fe–N structures in heterogeneous electrocatalysts which contain FeS and Fe3C phases. The electrocatalysts have been operated for 5000 cycles with a small 39 mV shift in half‐wave potential. By combining advanced electron microscopy and Mössbauer spectroscopy, we have identified the electrocatalytically active Fe–N6 complexes (FeN6, [FeIII(porphyrin)(pyridine)2]). We expect the understanding of the FeN6 structure will pave the way towards new advanced Fe–N based electrocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号