首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An efficient two‐step synthesis of the first NHC‐stabilized disilavinylidene (Z)‐(SIdipp)SiSi(Br)Tbb ( 2 ; SIdipp=C[N(C6H3‐2,6‐iPr2)CH2]2, Tbb=C6H2‐2,6‐[CH(SiMe3)2]2‐4‐tBu, NHC=N‐heterocyclic carbene) is reported. The first step of the procedure involved a 2:1 reaction of SiBr2(SIdipp) with the 1,2‐dibromodisilene (E)‐Tbb(Br)SiSi(Br)Tbb at 100 °C, which afforded selectively an unprecedented NHC‐stabilized bromo(silyl)silylene, namely SiBr(SiBr2Tbb)(SIdipp) ( 1 ). Alternatively, compound 1 could be obtained from the 2:1 reaction of SiBr2(SIdipp) with LiTbb at low temperature. 1 was then selectively reduced with C8K to give the NHC‐stabilized disilavinylidene 2 . Both low‐valent silicon compounds were comprehensively characterized by X‐ray diffraction analysis, multinuclear NMR spectroscopy, and elemental analyses. Additionally, the electronic structure of 2 was studied by various quantum‐chemical methods.  相似文献   

2.
Reaction of the arylchlorosilylene‐NHC adduct ArSi(NHC)Cl [Ar=2,6‐Trip2C6H3; NHC=(MeC)2(NMe)2C:] 1 with one molar equiv of lithium diphenylphosphanide affords the first stable NHC‐stabilized acyclic phosphinosilylene adduct 2 (ArSi(NHC)PPh2), which could be structurally characterized. Compound 2 , when reacted with one molar equiv selenium and sulfur, affords the silanechalcogenones 4 a and 4 b (ArSi(NHC)(?E)PPh2, 4 a : E=Se, 4 b : E=S), respectively. Conversion of 2 with an excess of Se and S, through additional insertion of one chalcogen atom into the Si?P bond, leads to 3 a and 3 b (ArSi(NHC)(?E)‐E‐P(?E)Ph2, 3 a : E=Se, 3 b : E=S), respectively. Additionally, the exposure of 2 to N2O or CO2 yielded the isolable NHC‐stabilized silanone 4 c , Ar(NHC)(Ph2P)Si?O.  相似文献   

3.
The generation of heavier double‐bond systems without by‐ or side‐product formation is of considerable importance for their application in synthesis. Peripheral functional groups in such alkene homologues are promising in this regard owing to their inherent mobility. Depending on the steric demand of the N‐alkyl substituent R, the reaction of disilenide Ar2Si?Si(Ar)Li (Ar=2,4,6‐iPr3C6H2) with ClP(NR2)2 either affords the phosphinodisilene Ar2Si?Si(Ar)P(NR2)2 (for R=iPr) or P‐amino functionalized phosphasilenes Ar2(R2N)Si? Si(Ar)?P(NR2) (for R=Et, Me) by 1,3‐migration of one of the amino groups. In case of R=Me, upon addition of one equivalent of tert‐butylisonitrile a second amino group shift occurs to yield the 1‐aza‐3‐phosphaallene Ar2(R2N)Si? Si(NR2)(Ar)? P?C?NtBu with pronounced ylidic character. All new compounds were fully characterized by multinuclear NMR spectroscopy as well as single‐crystal X‐ray diffraction and DFT calculations in selected cases.  相似文献   

4.
In contrast to the well‐established chemistry of ketones (R2C?O), the reactivity of the elusive heavier congeners R2E?O (E=Si, Ge, Sn, Pb) is far less explored because of the high polarity of the E?O bonds and hence their tendency to oligomerize with no activation barrier. Very recently, great advances have been achieved in the synthesis of isolable compounds with E?O bonds, including the investigation of donor‐stabilized isolable silanones and the first stable “genuine” germanone. These compounds show drastically different reactivities compared to ketones and represent versatile building blocks in silicon–oxygen and germanium–oxygen chemistry. This and other exciting achievements are described in this Minireview.  相似文献   

5.
The addition of BCl3 to the carbene‐transfer reagent NHC→SiCl4 (NHC=1,3‐dimethylimidazolidin‐2‐ylidene) gave the tetra‐ and pentacoordinate trichlorosilicon(IV) cations [(NHC)SiCl3]+ and [(NHC)2SiCl3]+ with tetrachloroborate as counterion. This is in contrast to previous reactions, in which NHC→SiCl4 served as a transfer reagent for the NHC ligand. The addition of BF3 ? OEt2, on the other hand, gave NHC→BF3 as the product of NHC transfer. In addition, the highly Lewis acidic bis(pentafluoroethyl)silane (C2F5)2SiCl2 was treated with NHC→SiCl4. In acetonitrile, the cationic silicon(IV) complexes [(NHC)SiCl3]+ and [(NHC)2SiCl3]+ were detected with [(C2F5)SiCl3]? as counterion. A similar result was already reported for the reaction of NHC→SiCl4 with (C2F5)2SiH2, which gave [(NHC)2SiCl2H][(C2F5)SiCl3]. If the reaction medium was changed to dichloromethane, the products of carbene transfer, NHC→Si(C2F5)2Cl2 and NHC→Si(C2F5)2ClH, respectively, were obtained instead. The formation of the latter species is a result of chloride/hydride metathesis. These compounds may serve as valuable precursors for electron‐poor silylenes. Furthermore, the reactivity of NHC→SiCl4 towards phosphines is discussed. The carbene complex NHC→PCl3 shows similar reactivity to NHC→SiCl4, and may even serve as a carbene‐transfer reagent as well.  相似文献   

6.
The two‐coordinate germanium cation [(IDipp){(Me3Si)2CH}Ge:]+ has been synthesized, which lacks π‐donor stabilization of the metal center and consequently has a very small HOMO–LUMO gap (187 kJ mol?1). It undergoes a variety of facile oxidative bond‐forming reactions, most notably allowing access to the first examples of Group 14 metal cations containing M?E multiple bonds (E=C, N). The use of an electrostatic (rather than purely steric) strategy to discourage aggregation means that less bulky systems (for example, containing a primary alkylidene fragment, ?CHR) are accessible.  相似文献   

7.
E?Si transfer : Anionic compounds capable of transferring a silicon‐containing double bond are reviewed (see figure), particularly reagents with Si?Si moieties (Tip=2,4,6‐iPr3C6H2, M=Li, Na, K) and their applications towards main‐group and transition‐metal electrophiles, as well as their reactivity towards organic compounds. A few recently reported derivatives with Si?C (Ad=1‐adamantyl) and Si?P moieties are included for completeness.

  相似文献   


8.
The reaction of the bisboracumulene (CAAC)2B2 (CAAC=1‐(2,6‐diisopropylphenyl)‐3,3,5,5‐tetramethylpyrrolidin‐2‐ylidene) with excess tert‐butylisocyanide resulted in complexation of the isocyanide at boron. Though this compound might be formally drawn with a lone pair on boron, these electrons are highly delocalized throughout a conjugated π‐network consisting of the π‐acidic CAAC and isocyanide ligands. Heating this compound to 110 °C liberated the organic periphery of both isocyanide ligands, yielding the first example of a dicyanodiborene. Cyclic voltammetry conducted on this diborene indicated the presence of reduction waves, making this compound unique among diborenes, which are otherwise highly reducing.  相似文献   

9.
SiSe matters : Diselenadisiletane 2 , formed from direct reaction of a racemic silylene 1 with elemental selenium, gives the first bis(silaselenone) upon hydrolysis with water ( 3 ; see picture, C gray, H white, N blue, O red, Se purple, Si green; d(Si?Se)=215 pm). The reaction is stereoconvergent: only racemic forms of 3 are obtained from a mixture of racemic and meso forms of 2 .

  相似文献   


10.
Reaction of carbene‐stabilized disilicon ( 1 ) with Fe(CO)5 gives the 1:1 adduct L:Si?Si[Fe(CO)4]:L (L:=C{N(2,6‐Pri2C6H3)CH}2) ( 2 ) at room temperature. At raised temperature, however, 2 may react with another equivalent of Fe(CO)5 to give L:Si[μ‐Fe2(CO)6](μ‐CO)Si:L ( 3 ) through insertion of both CO and Fe2(CO)6 into the Si2 core, which represents the first experimental realization of transition metal‐carbonyl‐mediated cleavage of a Si?Si double bond. The structures and bonding of both 2 and 3 have been investigated by spectroscopic, crystallographic, and computational methods.  相似文献   

11.
An N‐heterocyclic‐carbene‐ligated 3‐benzoborepin with a bridged structure has been synthesized by double radical trans‐hydroboration of benzo[3,4]cycloundec‐3‐ene‐1,5‐diyne with an N‐heterocyclic carbene borane. The thermal reaction of the NHC‐ligated borepin at 150 °C gives an isolable NHC‐boranorcaradiene. Experiments and density functional theory calculations support a mechanism whereby the borepin initially rearranges to a boranorcaradiene by a thermal 6π‐electrocyclic reaction. This is followed by 1,5‐boron shift to give a rearranged boranorcaradiene. This shift occurs with stereoinversion at boron through a transition state with open‐shell diradical character. This is the first example of the isolation of a boranorcaradiene from a thermal reaction of a borepin.  相似文献   

12.
The complexation of two equivalents of a cyclic (alkyl)(amino)carbene (CAAC) to tetrabromodiborane, followed by reduction with four equivalents of sodium naphthalide, led to the formation of the CAAC‐stabilized linear diboracumulene (CAAC)2B2. The capacity of the CAAC ligand to facilitate B2→CAAC donation of π‐electron density resulted in important differences between this species and a previously reported complex featuring a B?B triple bond stabilized by cyclic di(amino)carbenes, including a longer B? B bond and shorter B? C bonds. Frontier orbital analysis indicated sharing of valence electrons across the entire linear C‐B‐B‐C unit in (CAAC)2B2, which is supported by natural population analysis and cyclic voltammetry.  相似文献   

13.
14.
15.
16.
A series of N‐heterocyclic carbene‐stabilized silanechalcogenones 2 a , b (Si?O), 3 a , b (Si?S), 4 a , b (Si?Se), and 5 a , b (Si?Te) are described. The silanone complexes 2 a , b were prepared by facile oxygenation of the carbene–silylene adducts 1 a , b with N2O, whereas their heavier congeners were synthesized by gentle chalcogenation of 1 a , b with equimolar amounts of elemental sulfur, selenium, and tellurium, respectively. These novel compounds have been isolated in a crystalline form in high yields and have been fully characterized by a variety of techniques including IR spectroscopy, ESIMS, and multinuclear NMR spectroscopy. The structures of 2 b , 3 a , 4 a , 4 b , and 5 b have been confirmed by single‐crystal X‐ray crystallography. Due to the NHC→Si donor–acceptor electronic interaction, the Si?E (E=O, S, Se, Te) moieties within these compounds are well stabilized and thus the compounds possess several ylide‐like resonance structures. Nevertheless, these species also exhibit considerable Si?E double‐bond character, presumably through a nonclassical Si?E π‐bonding interaction between the chalcogen lone‐pair electrons and two antibonding Si? N σ* orbitals, as evidenced by their high stretching vibration modes and the shortening of the Si–E distances (between 5.4 and 6.3 %) compared with the corresponding Si? E single‐bond lengths.  相似文献   

17.
18.
One‐electron oxidation of the disilicon(0) compound Si2(Idipp)2 ( 1 , Idipp=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene) with [Fe(C5Me5)2][B(ArF)4] (ArF=C6H3‐3,5‐(CF3)2) affords selectively the green radical salt [Si2(Idipp)2][B(ArF)4] ( 1 ‐[B(ArF)4). Oxidation of the centrosymmetric 1 occurs reversibly at a low redox potential (E1/2=?1.250 V vs. Fc+/Fc), and is accompanied by considerable structural changes as shown by single‐crystal X‐ray structural analysis of 1 ‐B(ArF)4. These include a shortening of the Si?Si bond, a widening of the Si‐Si‐CNHC angles, and a lowering of the symmetry, leading to a quite different conformation of the NHC substituents at the two inequivalent Si sites in 1+ . Comparative quantum chemical calculations of 1 and 1+ indicate that electron ejection occurs from the symmetric (n+) combination of the Si lone pairs (HOMO). EPR studies of 1 ‐B(ArF)4 in frozen solution verified the inequivalency of the two Si sites observed in the solid‐state, and point in agreement with the theoretical results to an almost equal distribution of the spin density over the two Si atoms, leading to quite similar 29Si hyperfine coupling tensors in 1+ . EPR studies of 1 ‐B(ArF)4 in liquid solution unraveled a topomerization with a low activation barrier that interconverts the two Si sites in 1+ .  相似文献   

19.
1,3,2‐diazaphospholenes catalyze metal‐free transfer hydrogenation of a N?N double bond using ammonia–borane under mild reaction conditions, thus allowing access to various hydrazine derivatives. Kinetic and computational studies revealed that the rate‐determining step involves simultaneous breakage of the B? H and N? H bonds of ammonia–borane. The reaction is therefore viewed as a concerted type of hydrogenolysis.  相似文献   

20.
The lability of B=B, B?P, and B–halide bonds is combined in the syntheses of the first diiododiborenes. In a series of reactivity tests, these diiododiborenes undergo cleavage of all six of their central bonds in different ways, leading to products of B=B hydrogenation and dihalogenation as well as halide exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号