首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Seed‐mediated growth is a powerful and versatile approach for the synthesis of colloidal metal nanocrystals. The vast allure of this approach mainly stems from the staggering degree of control one can achieve over the size, shape, composition, and structure of nanocrystals. These parameters not only control the properties of nanocrystals but also determine their relevance to, and performance in, various applications. The ingenuity and artistry inherent to seed‐mediated growth offer extensive promise, enhancing a number of existing applications and opening the door to new developments. This Review demonstrates how the diversity of metal nanocrystals can be expanded with endless opportunities by using seeds with well‐defined and controllable internal structures in conjunction with a proper combination of capping agent and reduction kinetics. New capabilities and future directions are also highlighted.  相似文献   

5.
Biodegradable pH‐responsive polysuccinimide nanoparticles (PSI‐NPs) are synthesized for directly delivering agrochemicals to plant phloem to improve their efficacy. The PSI‐NPs have an average size of 20.6 nm with negative charge on the surface. The desired responsiveness to changes in pH is demonstrated by release efficiency of the model molecule (Coumarin 6), which increases with increasing pH over 24 h. The internalization of PSI‐NPs into grapefruit cells occurs in 10 min, and into nucleus in 2 h, with most of the PSI‐NPs being distributed in cytoplasm and nucleus. The proportion of PSI‐NPs in plant cells significantly increases with time, from 19.1% at 10 min to 55.5% at 2 h of administering. The PSI‐NPs do not show significant inhibitory effects on soil microbial growth and activity. These results indicate that this smart nanodelivery system has potential of application in agriculture for mitigating phloem‐limited diseases, such as citrus huanglongbing.  相似文献   

6.
MoS2 particles with different size distributions were prepared by simple ultrasonication of bulk MoS2 followed by gradient centrifugation. Relative to the inert microscale MoS2, nanoscale MoS2 showed significantly improved catalytic activity toward the oxygen‐reduction reaction (ORR) and hydrogen‐evolution reaction (HER). The decrease in particle size was accompanied by an increase in catalytic activity. Particles with a size of around 2 nm exhibited the best dual ORR and HER performance with a four‐electron ORR process and an HER onset potential of ?0.16 V versus the standard hydrogen electrode (SHE). This is the first investigation on the size‐dependent effect of the ORR activity of MoS2, and a four‐electron transfer route was found. The exposed abundant Mo edges of the MoS2 nanoparticles were proven to be responsible for the high ORR catalytic activity, whereas the origin of the improved HER activity of the nanoparticles was attributed to the plentiful exposed S edges. This newly discovered process provides a simple protocol to produce inexpensive highly active MoS2 catalysts that could easily be scaled up. Hence, it opens up possibilities for wide applications of MoS2 nanoparticles in the fields of energy conversion and storage.  相似文献   

7.
The development of delivery systems efficiently uptaken by cells is of due importance since sites of drug action are generally localized in subcellular compartments. Herein, naked and core–shell polymeric nanoparticles (NPs) have been produced from poly(lactic‐co‐glycolic acid)—PLGA, poly(ethylene oxide)‐b‐poly(ε‐caprolactone)—PEO‐b‐PCL, and poly(ethylene oxide)‐b‐poly(lactic acid)—PEO‐b‐PLA. The nanostructures are characterized and the cellular uptake behavior is evaluated. The data evidence that cellular uptake is enhanced as the length of the hydrophilic PEO‐stabilizing shell reduces and that high negative surface charge restricts cellular uptake. Furthermore, NPs of higher degree of hydrophobicity (PEO‐b‐PCL) are more efficiently internalized as compared to PEO‐b‐PLA NPs. Accordingly, taking into account our recent published results 1 and the findings of the current investigation, there should be a compromise regarding protein fouling and cellular uptake as resistance to nonspecific protein adsorption and enhanced cellular uptake are respectively directly and inversely related to the length of the PEO‐stabilizing shell.

  相似文献   


8.
The evaporation driven self‐assembly of novel colloidal silica Janus particles was evaluated by scanning electron microscopy in comparison to unfunctionalized silica particles. The cyclodextrin‐ and azobenzene‐modified compound was obtained utilizing Pickering emulsion approach, in which the particles were immobilized on solidified wax droplets and subsequently functionalized. Silica particles were modified with 3‐aminopropyl trimethoxysilane and afterward reacted with tosyl‐β‐CD or phenylazo(benzoic acid), respectively. Mesoscopic structures of the colloidal dispersions, as dried films from aqueous solution, have been investigated by scanning electron microscopy and dynamic light scattering. Interestingly, it has been observed that the Janus particles show a significantly different evaporation‐induced assembly than the unmodified particles.  相似文献   

9.
As a global health problem, liver fibrosis still does not have approved treatment. It was proved that N-(3,4,5-trichlorophenyl)-2(3-nitrobenzenesulfonamide) benzamide (IMB16-4) has anti-hepatic fibrosis activity. However, IMB16-4 displays poor water solubility and poor bioavailability. We are devoted to developing biodegraded liposome-coated polymeric nanoparticles (LNPs) as IMB16-4 delivery systems for improving aqueous solubility, cellular uptake, and anti-fibrotic effects. The physical states of IMB16-4−LNPs were analyzed using a transmission electron microscope (TEM), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and differential scanning calorimeter (DSC). The results show that IMB16-4−LNPs increased the drug loading compared to liposomes and enhanced cellular uptake behavior compared with IMB16-4−NPs. In addition, IMB16-4−LNPs could repress the expression of hepatic fibrogenesis-associated proteins, indicating that IMB16-4−LNPs exhibited evident anti-fibrotic effects.  相似文献   

10.
Summary: Epoxy nanocomposites containing rod‐like silicate (attapulgite) were prepared using a simple organic modification to the nanorods. The modification led to effective interfacial adhesion between the ceramic nanorods and the epoxy resin and hence good load transfer. Scanning electron microscopy examination revealed a uniform dispersion of nanorods in the epoxy resin. Compared to the neat resin, nanocomposites with 7.47 vol.‐% nanorods exhibited an increase in the (rubbery state) storage modulus of 122.5%. In addition, the nanocomposites exhibited improved dimensional stability both above and below the Tg.

Storage modulus of the neat resin and nanocomposites.  相似文献   


11.
12.
We have studied the size‐dependent inhibition capabilities of colloidal selenium (Se) particles on lipopolysaccharide (LPS)‐induced nitric oxide (NO) production in RAW 264.7 cells. Four particle sizes of the nano‐Se, ranging from 45 ? 220 nm in diameter, were examined. All of them, unlike their bulk material, show clear capabilities of inhibition and a trend dependent on the particles size. The inhibition becomes more potent as the particle size increases. It indicates that pursuing the reduction of colloidal sizes into nanoscale is not favoured in this biological system.  相似文献   

13.
Novel core‐shell quinone‐rich poly(dopamine)–magnetic nanoparticles (MNPs) were prepared by using an in situ polymerization method. Catechol groups were oxidized to quinone by using a thermal treatment. MNPs were characterized by using X‐ray diffraction, X‐ray photoelectron spectroscopy, atomic force microscopy, magnetic force microscopy, UV/Vis, Fourier‐transform infrared spectroscopy, and electrochemical techniques. The hybrid nanomaterial showed an average core diameter of 17 nm and a polymer‐film thickness of 2 nm. The core‐shell nanoparticles showed high reactivity and were used as solid supports for the covalent immobilization of glucose oxidase (Gox) through Schiff base formation and Michael addition. The amount of Gox immobilized onto the nanoparticle surface was almost twice that of the nonoxidized film. The resulting biofunctionalized MNPs were used to construct an amperometric biosensor for glucose. The enzyme biosensor has a sensitivity of 8.7 mA M ?1 cm?2, a low limit of detection (0.02 mM ), and high stability for 45 days. Finally, the biosensor was used to determine glucose in blood samples and was checked against a commercial glucometer.  相似文献   

14.
15.
A new dual soft‐template system comprising the asymmetric triblock copolymer poly(styrene‐b‐2‐vinyl pyridine‐b‐ethylene oxide) (PS‐b‐P2VP‐b‐PEO) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to synthesize hollow mesoporous silica (HMS) nanoparticles with a center void of around 17 nm. The stable PS‐b‐P2VP‐b‐PEO polymeric micelle serves as a template to form the hollow interior, while the CTAB surfactant serves as a template to form mesopores in the shells. The P2VP blocks on the polymeric micelles can interact with positively charged CTA+ ions via negatively charged hydrolyzed silica species. Thus, dual soft‐templates clearly have different roles for the preparation of the HMS nanoparticles. Interestingly, the thicknesses of the mesoporous shell are tunable by varying the amounts of TEOS and CTAB. This study provides new insight on the preparation of mesoporous materials based on colloidal chemistry.  相似文献   

16.
Twinkle, twinkle: The blinking of semiconductor colloidal nanocrystals is the main inconvenience of these bright nanoemitters. There are various approaches for obtaining non‐blinking nanocrystals, one of which is to grow a thick coat of CdS on the CdSe core (see picture). Applications of this method in the fields of optoelectronic devices, biologic labelling and quantum information processing are discussed.

  相似文献   


17.
18.
Rheological, thermal, and mechanical properties of polymer particle/LLDPE blends were studied in this paper. The blends were prepared individually by incorporating nanoparticles of polystyrene (nPS) of ~60 nm and polymethyl methacrylate (nPMMA) of ~50 nm with different wt% loading (i.e., 0.10–0.5%). It was shown from the experimental results that rheological, thermal and mechanical properties were increased as polymer particles blended with LLDPE. Blends with 0.25 wt% loading of nPS and 0.5 wt% loading of nPMMA exhibited better rheological, thermal, and mechanical properties compared with that of other wt% loadings. The improvements in properties were due to the close packing of LLDPE chains as recorded by improvement in crystallinity of LLDPE with addition of nPS and nPMMA as shown by SEM. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Polystyrene‐core–silica‐shell hybrid particles were synthesized by combining the self‐assembly of nanoparticles and the polymer with a silica coating strategy. The core–shell hybrid particles are composed of gold‐nanoparticle‐decorated polystyrene (PS‐AuNP) colloids as the core and silica particles as the shell. PS‐AuNP colloids were generated by the self‐assembly of the PS‐grafted AuNPs. The silica coating improved the thermal stability and dispersibility of the AuNPs. By removing the “free” PS of the core, hollow particles with a hydrophobic cage having a AuNP corona and an inert silica shell were obtained. Also, Fe3O4 nanoparticles were encapsulated in the core, which resulted in magnetic core–shell hybrid particles by the same strategy. These particles have potential applications in biomolecular separation and high‐temperature catalysis and as nanoreactors.  相似文献   

20.
The design of high‐affinity lectin ligands is critical for enhancing the inherently weak binding affinities of monomeric carbohydrates to their binding proteins. Glyco‐gold nanoparticles (glyco‐AuNPs) are promising multivalent glycan displays that can confer significantly improved functional affinity of glyco‐AuNPs to proteins. Here, AuNPs are functionalized with several different carbohydrates to profile lectin affinities. We demonstrate that AuNPs functionalized with mixed thiolated ligands comprising glycan (70 mol %) and an amphiphilic linker (30 mol %) provide long‐term stability in solutions containing high concentrations of salts and proteins, with no evidence of nonspecific protein adsorption. These highly stable glyco‐AuNPs enable the detection of model plant lectins such as Concanavalin A, wheat germ agglutinin, and Ricinus communis Agglutinin 120, at subnanomolar and low picomolar levels through UV/Vis spectrophotometry and dynamic light scattering, respectively. Moreover, we develop in situ glyco‐AuNPs‐based agglutination on an oriented immobilized antibody microarray, which permits highly sensitive lectin sensing with the naked eye. In addition, this microarray is capable of detecting lectins presented individually, in other environmental settings, or in a mixture of samples. These results indicate that glyconanoparticles represent a versatile and highly sensitive method for detecting and probing the binding of glycan to proteins, with significant implications for the construction of a variety of platforms for the development of glyconanoparticle‐based biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号