首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional polymer membranes suffer from low flux and serious fouling when used for treating emulsified oil/water mixtures. Reported herein is the fabrication of a novel superhydrophilic and underwater superoleophobic poly(acrylic acid)‐grafted PVDF filtration membrane using a salt‐induced phase‐inversion approach. A hierarchical micro/nanoscale structure is constructed on the membrane surface and endows it with a superhydrophilic/underwater superoleophobic property. The membrane separates both surfactant‐free and surfactant‐stabilized oil‐in‐water emulsions under either a small applied pressure (<0.3 bar) or gravity, with high separation efficiency and high flux, which is one to two orders of magnitude higher than those of commercial filtration membranes having a similar permeation property. The membrane exhibits an excellent antifouling property and is easily recycled for long‐term use. The outstanding performance of the membrane and the efficient, energy and cost‐effective preparation process highlight its potential for practical applications.  相似文献   

2.
超亲水-超疏油油水分离膜是一种过水隔油的特殊分离膜,在处理海洋溢油污染、环境含油废水时具有保持分离膜不被油污染的优势,有十分重要的实际意义。为了掌握近年来超亲水超疏油分离膜的发展动态,本文首先以液体静压力与毛细作用力为基础阐述亲水疏油膜的油水分离机理;然后分类概括超亲水-超疏油金属基底网膜、刺激响应油水分离膜、无基底聚合物膜材料的制备及各项性能的研究新进展;最后总结目前在该领域仍存在的问题并进行展望。  相似文献   

3.
We report a simple and environment friendly method to fabricate superhydrophobic metallic mesh surfaces for oil/water separation. The obtained mesh surface exhibits superhydrophobicity and superoleophilicity after it was dried in an oven at 200 °C for 10 min. A rough silver layer is formed on the mesh surface after immersion, and the spontaneous adsorption of airborne carbon contaminants on the silver surface lower the surface free energy of the mesh. No low‐surface‐energy reagents and/or volatile organic solvents are used. In addition, we demonstrate that by using the mesh box, oils can be separated and collected from the surface of water repeatedly, and that high separation efficiencies of larger than 92 % are retained for various oils. Moreover, the superhydrophobic mesh also possesses excellent corrosion resistance and thermal stability. Hence, these superhydrophobic meshes might be good candidates for the practical separation of oil from the surface of water.  相似文献   

4.
A cotton fabric was coated with a polymer that contains both poly(dimethyl siloxane) (PDMS) and poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA). When the repeat unit number of PDMS is about three‐fold that of PDMAEMA and the fabric is exposed to air, the fabric is superhydrophobic because PDMS in the coating covers the PDMAEMA chains. Upon contact with an oil‐in‐water emulsion, the water‐soluble PDMAEMA rises to the top and the side in contact with the emulsion becomes hydrophilic. The emerged PDMAEMA chains then cause the emulsion droplets to coagulate, and the aggregated oil fills the pores on the superhydrophobic side of the fabric. The oil‐impregnated side remains hydrophobic even upon prolonged contact with water. Thus, a Janus fabric is elegantly generated in situ and sustained. This easy‐to‐prepare Janus fabric rapidly and efficiently separates oil from emulsions and may find practical applications.  相似文献   

5.
Responsive polymer interfacial materials are ideal candidates for controlling surface wetting behavior. Here we developed smart nanostructured electrospun polymer membranes which are capable of switching oil/water wettability using CO2 as the trigger. In particular, the combination of CO2‐responsiveness and porous nanostructure enables the as‐prepared membranes to be used as a novel oil/water on–off switch. We anticipate that the promising versatility and simplicity of this system would not only open up a new way of surface wettability change regulation by gas, but also have obvious advantages in terms of highly controlled oil/water separation and CO2 applications.  相似文献   

6.
A novel bi‐functional Janus cotton fabric is used to separate oil from oil‐in‐water emulsions. This fabric is superhydrophobic on one surface and polyamine‐bearing on the other. When used as a filter, the polyamine‐bearing side causes the micrometer‐sized oil droplets to coalesce. The coalesced oil then fills fabric pores on the superhydrophobic side and selectively permeates it. Oil separation using this method is rapid and the separated oil is pure. Furthermore, the content of the model oil hexadecane (HD) in water after a separation can be reduced to less than 0.03±0.03 vol %. These features demonstrate the practical potential of this technology.  相似文献   

7.
The separation of oil from oily water is an important pursuit because of increasing worldwide oil pollution. Separation by the use of materials with selective oil/water absorption is a relatively recent area of development, yet highly promising. Owing to their selective superantiwetting/superwetting properties towards water and oil, superhydrophobic/superoleophilic surfaces and underwater superoleophobic surfaces have been developed for the separation of oil/water‐free mixtures and emulsions. In this Review, after a short introduction to oil/water separation, we describe the principles of materials with selective oil/water absorption and outline recent advances in oil/water separation with superwetting/superantiwetting materials, including their design, their fabrication, and models of experimental setups. Finally, we discuss the current state of this new field and point out the remaining problems and future challenges.  相似文献   

8.
A superhydrophilic and underwater superoleophobic Cu(OH)2‐covered mesh with micro‐ and nanoscale hierarchical composite structures is successfully fabricated through a one‐step chemical oxidation of a smooth‐copper mesh. Such mesh, without any further modification, can selectively separate water from oil/water mixtures with high separation efficiency, and possess excellent stability even after 60 uses. This method provides a simple, low‐cost, and scalable strategy for the purification of oily wastewater.  相似文献   

9.
The frequent occurrence of crude oil spills and the indiscriminate discharge of oily wastewater have caused serious environmental pollution. The existing separation methods have some defects and are not suitable for complex oil–water emulsions. Therefore, the efficient separation of complex oil–water emulsions has been of great interest to researchers. Asymmetric wettable Janus materials, which can efficiently separate complex oil–water emulsions, have attracted widespread attention. This comprehensive review systematically summarizes the research progress of asymmetric wettable Janus materials for oil–water separation in the last decade, and introduces, in detail, the preparation methods of them. Specifically, the latest research results of two-dimensional Janus materials, three-dimensional Janus materials, smart responsive Janus materials, and environmentally friendly Janus materials for oil–water separation are elaborated. Finally, ongoing challenges and outlook for the future research of asymmetric wettable Janus materials are presented.  相似文献   

10.
Superhydrophobic/superoleophilic composites HFGO@ZIF‐8 have been prepared from highly fluorinated graphene oxide (HFGO) and the nanocrystalline zeolite imidazole framework ZIF‐8. The structure‐directing and coordination‐modulating properties of HFGO allow for the selective nucleation of ZIF‐8 nanoparticles at the graphene surface oxygen functionalities. This results in localized nucleation and size‐controlled ZIF‐8 nanocrystals intercalated in between HFGO layers. The composite microstructure features fluoride groups bonded at the graphene. Self‐assembly of a unique micro‐mesoporous architecture is achieved, where the micropores originate from ZIF‐8 nanocrystals, while the functionalized mesopores arise from randomly organized HFGO layers separated by ZIF‐8 nanopillars. The hybrid material displays an exceptional high water contact angle of 162° and low oil contact angle of 0° and thus reveals very high sorption selectivity, fast kinetics, and good absorbencies for nonpolar/polar organic solvents and oils from water. Accordingly, Sponge@HFGO@ZIF‐8 composites are successfully utilized for oil–water separation.  相似文献   

11.
Oil/water separation through superhydrophobic/superoleophilic materials has attracted considerable interest over the past decades; however, dealing with oil spills on broad waters through an active way remains a challenge. Herein, we report a self‐propelled smart device driven by the decomposition of hydrogen peroxide that can spontaneously move on the water surface and collect floating oil droplets inside with superhydrophobic and superoleophilic properties. Moreover, the self‐propelled smart device exhibits excellent stability and high efficiency for oil/water separation. We believe this study may provide a promising strategy for fabricating smart aquatic devices that have potential applications in water remediation.  相似文献   

12.
Surface wetting on polyelectrolyte multilayers (PEMs), prepared by alternating deposition of polydiallyldimethylammonium chloride (PDDA) and poly(styrene sulfonate) (PSS), was investigated mainly in water‐solid‐oil systems. The surface‐wetting behavior of as‐prepared PEMs was well correlated to the molecular structures of the uncompensated ionic groups on the PEMs as revealed by sum frequency generation vibrational and X‐ray photoelectron spectroscopies. The orientation change of the benzenesulfonate groups on the PSS‐capped surfaces causes poor water wetting in oil or air and negligible oil wetting in water, while the orientation change of the quaternized pyrrolidine rings on the PDDA‐capped surfaces hardly affects their wetting behavior. The underwater oil repellency of PSS‐capped PEMs was successfully harnessed to manufacture highly efficient filters for oil‐water separation at high flux.  相似文献   

13.
Membranes with special functionalities, such as self‐cleaning, especially those for oil/water separation, have attracted much attention due to their wide applications. However, they are difficult to recycle and reuse after being damaged. Herein, we put forward a new N‐substituted polyurethane membrane concept with self‐healing ability to address this challenge. The membrane obtained by electrospinning has a self‐cleaning surface with an excellent self‐healing ability. Importantly, by tuning the membrane composition, the membrane exhibits different wettability for effective separation of oil/water mixtures and water‐in‐oil emulsions, whilst still displaying a self‐healing ability and durability against damage. To the best of our knowledge, this is the first report to demonstrate a self‐healing membrane for oil/water separation, which provides the fundamental research for the development of advanced oil/water separation materials.  相似文献   

14.
15.
The interest in highly water‐repellent surfaces has grown in recent years due to the desire for self‐cleaning surfaces. A super‐hydrophobic surface is one that achieves a water contact angle of 150° or greater. This article explores the different approaches used to construct super‐hydrophobic surfaces and identifies the key properties of each surface that contribute to its hydrophobicity. The models used to describe surface interaction with water are considered, with attention directed to the methods of contact angle analysis. A summary describing the different routes to hydrophobicity is also given.  相似文献   

16.
17.
18.
The function of allosteric enzymes can be activated or inhibited through binding of specific effector molecules. Herein, we describe how the skeletal deformation, pore configuration, and ultimately adsorptive behavior of a dynamic metal–organic framework (MOF), (Me2NH2)[In(atp)]2 (in which atp=2‐aminoterephthalate), are controlled by the allocation and orientation of its counter ions triggered by the inclusion/removal of different guest molecules. The power of such allosteric control in MOFs is highlighted through the optimization of the hydrocarbon separation performance by achieving multiple pore configurations but without altering the chemical composition.  相似文献   

19.
20.
This paper describes the spontaneous vesicular assembly of a naphthalene–diimide (NDI)‐based non‐ionic bolaamphiphile in aqueous medium by using the synergistic effects of π‐stacking and hydrogen bonding. Site isolation of the hydrogen‐bonding functionality (hydrazide), a strategy that has been adopted so elegantly in nature, has been executed in this system to protect these moieties from the bulk water so that the distinct role of hydrogen bonding in the self‐assembly of hydrazide‐functionalized NDI building blocks could be realized, even in aqueous solution. Furthermore, the electron‐deficient NDI‐based bolaamphiphile could engage in donor–acceptor (D–A) charge‐transfer (CT) interactions with a water‐insoluble electron‐rich pyrene donor by virtue of intercalation of the latter chromophore in between two NDI building blocks. Remarkably, even when pyrene was located between two NDI blocks, intermolecular hydrogen‐bonding networks between the NDI‐linked hydrazide groups could be retained. However, time‐dependent AFM studies revealed that the radius of curvature of the alternately stacked D–A assembly increased significantly, thereby leading to intervesicular fusion, which eventually resulted in rupturing of the membrane to form 1D fibers. Such 2D‐to‐1D morphological transition produced CT‐mediated hydrogels at relatively higher concentrations. Instead of pyrene, when a water‐soluble carboxylate‐functionalized pyrene derivative was used as the intercalator, non‐covalent tunable in‐situ surface‐functionalization could be achieved, as evidenced by the zeta‐potential measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号