首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
X‐ray magnetic circular dichroism spectroscopy has been used to characterize the electronic structure and magnetic moment of Cr2+. Our results indicate that the removal of a single electron from the 4sσg bonding orbital of Cr2 drastically changes the preferred coupling of the 3d electronic spins. While the neutral molecule has a zero‐spin ground state with a very short bond length, the molecular cation exhibits a ferromagnetically coupled ground state with the highest possible spin of S=11/2, and almost twice the bond length of the neutral molecule. This spin configuration can be interpreted as a result of indirect exchange coupling between the 3d electrons of the two atoms that is mediated by the single 4s electron through a strong intraatomic 3d‐4s exchange interaction. Our finding allows an estimate of the relative energies of two states that are often discussed as ground‐state candidates, the ferromagnetically coupled 12Σ and the low‐spin 2Σ state.  相似文献   

2.
The central MnII ions in a series of calix[4]arene‐stabilised butterflies can be sequentially replaced with LnIII ions, maintaining the structural integrity of the molecule but transforming its magnetic properties. The replacement of MnII for GdIII allows for the examination of the transferability of spin‐Hamiltonian parameters within the family as well as permitting their reliable determination. The introduction of the 4f ions results in weaker intramolecular magnetic exchange, an increase in the number of low‐lying excited states, and an increase in magnetisation relaxation, highlighting the importance of exchange over single‐ion anisotropy for the observation of SMM behaviour in this family of complexes. The presence of the [TMII/III(TBC[4])(OH)(solvent)] metalloligand (TM=transition metal, TBC=ptBu‐calix[4]arene) suggests that magnetic calix[n]arene building blocks can be employed to encapsulate a range of different “guests” within structurally robust “hosts”.  相似文献   

3.
We report solid‐state 1H nuclear magnetic resonance (NMR) spin‐lattice relaxation experiments, X‐ray diffractometry, field‐emission scanning electron microscopy, and both single‐molecule and cluster ab initio electronic structure calculations on 1‐methoxyphenanthrene ( 1 ) and 3‐methoxyphenanthrene ( 2 ) to investigate the rotation of the methoxy groups and their constituent methyl groups. The electronic structure calculations and the 1H NMR relaxation measurements can be used together to determine barriers for the rotation of a methoxy group and its constituent methyl group and to develop models for the two coupled motions.  相似文献   

4.
Anisotropic magnetic exchange is of great value for the design of high performance molecular nanomagnets. In the present work, enhanced single‐chain magnet (SCM) behavior is observed for a MoIII–MnII chain that exhibits anisotropic magnetic exchange. Self‐assembly of the pentagonal bipyramidal [Mo(CN)7]4? anion and the MnII unit with a tridentate ligand results in a neutral double zigzag 2,4‐ribbon structure which exhibits SCM behavior with a high relaxation barrier of 178(4) K. Open magnetic hysteresis loops are observed below 5.2 K, with a coercive field of 1.5 T at 2 K. Interestingly, this SCM can be considered to be a result of a step‐wise process based on our previously reported Mn2Mo single‐molecule magnets (SMMs).  相似文献   

5.
Single‐molecule imaging and manipulation with optical microscopy have become essential methods for studying biomolecular machines; however, only few efforts have been directed towards synthetic molecular machines. Single‐molecule optical microscopy was now applied to a synthetic molecular rotor, a double‐decker porphyrin (DD). By attaching a magnetic bead (ca. 200 nm) to the DD, its rotational dynamics were captured with a time resolution of 0.5 ms. DD showed rotational diffusion with 90° steps, which is consistent with its four‐fold structural symmetry. Kinetic analysis revealed the first‐order kinetics of the 90° step with a rate constant of 2.8 s?1. The barrier height of the rotational potential was estimated to be greater than 7.4 kJ mol?1 at 298 K. The DD was also forcibly rotated with magnetic tweezers, and again, four stable pausing angles that are separated by 90° were observed. These results demonstrate the potency of single‐molecule optical microscopy for the elucidation of elementary properties of synthetic molecular machines.  相似文献   

6.
Using ab initio calculations all the components of the magnetic anisotropy in a dinuclear [MnIIICuIICl(5‐Br‐sap)2(MeOH)] single‐molecule magnet (SMM) have been computed. These calculations reveal that apart from the single‐ion anisotropy, the exchange anisotropy also plays a crucial role in determining the sign as well as the magnitude of the cluster anisotropy. Developed magneto‐structural correlations suggest that a large ferromagnetic exchange can in fact reduce the ground‐state anisotropy, which is an integral component in the design of SMMs.  相似文献   

7.
The experimental investigation of the molecular magnetic anisotropy in crystals in which the magnetic centers are symmetry related, but do not have a parallel orientation has been approached by using torque magnetometry. A single crystal of the orthorhombic organometallic Cp*ErCOT [Cp*=pentamethylcyclopentadiene anion (C5Me5?); COT=cyclooctatetraenedianion (C8H82?)] single‐molecule magnet, characterized by the presence of two nonparallel families of molecules in the crystal, has been investigated above its blocking temperature. The results confirm an Ising‐type anisotropy with the easy direction pointing along the pseudosymmetry axis of the complex, as previously suggested by out‐of‐equilibrium angular‐resolved magnetometry. The use of torque magnetometry, not requiring the presence of magnetic hysteresis, proves to be even more powerful for these purposes than standard single‐crystal magnetometry. Furthermore, exploiting the sensitivity and versatility of this technique, magnetic anisotropy has been investigated up to 150 K, providing additional information on the crystal‐field splitting of the ground J multiplet of the ErIII ion.  相似文献   

8.
We investigate a family of dinuclear dysprosium metallocene single‐molecule magnets (SMMs) bridged by methyl and halogen groups [Cp′2Dy(μ‐X)]2 (Cp′=cyclopentadienyltrimethylsilane anion; 1 : X=CH3?; 2 : X=Cl?; 3 : X=Br?; 4 : X=I?). For the first time, the magnetic easy axes of dysprosium metallocene SMMs are experimentally determined, confirming that the orientation of them are perpendicular to the equatorial plane which is made up of dysprosium and bridging atoms. The orientation of the magnetic easy axis for 1 deviates from the normal direction (by 10.3°) due to the stronger equatorial interactions between DyIII and methyl groups. Moreover, its magnetic axes show a temperature‐dependent shifting, which is caused by the competition between exchange interactions and Zeeman interactions. Studies of fluorescence and specific heat as well as ab initio calculations reveal the significant influences of the bridging ligands on their low‐lying exchange‐based energy levels and, consequently, low‐temperature magnetic properties.  相似文献   

9.
Double‐decker complexes based on single‐molecule magnets (SMMs) are a class of highly promising molecules for applications in molecular spintronics, wherein control of both the ligand oxidative states and the 2D supramolecular structure on carbon materials is of great importance. This study focuses on the synthesis and study of 2,3,7,8,12,13,17,18‐octaethylporphyrin (OEP)–TbIII double‐decker complexes with different electronic structures comprising protonated, anionic, and radical forms. Magnetic susceptibility measurements revealed that only the anionic and radical forms of the OEP–TbIII double‐decker complexes exhibited SMM properties. The barrier heights for magnetic moment reversal were estimated to be 207 and 215 cm?1 for the anionic and radical forms, respectively. Scanning tunneling microscopy (STM) investigations revealed that these OEP–TbIII complexes form well‐ordered monolayers upon simple dropcasting from dilute dichloromethane solutions. All three complexes form an isomorphic pseudo‐hexagonal 2D pattern, regardless of the differences in the electronic structures of their porphyrin–Tb cores. This finding is of interest for SMM technology as ultrathin films of these materials undergoing chemical transformations will not require any detrimental reorganization. Finally, we demonstrate self‐assembly of the protonated 5,15‐bisdodecylporphyrin (BDP)–TbIII double‐decker complex as an example of successful supramolecular design to achieve controlled alignment of SMM‐active sites.  相似文献   

10.
A dinuclear CoII complex ( 1 ) featuring unprecedented anodic and cathodic switches for single‐molecule magnet (SMM) activity has been recently investigated (J. Am. Chem. Soc. 2013 , 135, 14670). The presence of sandwiched radicals in different oxidation states of this compound mediates magnetic coupling between the high‐spin (S=3/2) cobalt ions, which gives rise to SMM activity in both the oxidized ([ 1 (OEt2)]+) and reduced ([ 1 ]?) states. This feature represents the first example of a SMM exhibiting fully reversible, dual ON/OFF switchability. Here we apply ab initio and broken‐symmetry DFT calculations to elucidate the mechanisms responsible for magnetic properties and magnetization blocking in these compounds. It is found that due to the strong delocalization of the magnetic molecular orbital, there is a strong antiferromagnetic interaction between the radical and cobalt ions. The lack of high axiality of the cobalt centres explains why these compounds possess slow relaxation of magnetization only in an applied dc magnetic field.  相似文献   

11.
In recent years, plentiful lanthanide‐based (TbIII, DyIII, and ErIII) single‐molecule magnets (SMMs) were studied, while examples of other lanthanides, for example, TmIII are still unknown. Herein, for the first time, we show that by rationally manipulating the coordination sphere, two thulium compounds, 1 [(Tp)Tm(COT)] and 2 [(Tp*)Tm(COT)] (Tp=hydrotris(1‐pyrazolyl)borate; COT=cyclooctatetraenide; Tp*=hydrotris(3,5‐dimethyl‐1‐pyrazolyl)borate), can adopt the structure of non‐Kramers SMMs and exhibit their behaviors. Dynamic magnetic studies indicated that both compounds showed slow magnetic relaxation under dc field and a relatively high effective energy barrier (111 K for 1 , 46 K for 2 ). Magnetic diluted 1 a [(Tp)Tm0.05Y0.95(COT)] and 2 a [(Tp*)Tm0.05Y0.95(COT)] even exhibited magnetic relaxation under zero dc field. Relativistic ab initio calculations combined with single‐crystal angular‐resolved magnetometry measurements revealed the strong easy axis anisotropy and nearly degenerated ground doublet states. The comparison of 1 and 2 highlights the importance of local symmetry for obtaining Tm SMMs.  相似文献   

12.
A tetravalent uranium compound with a radical azobenzene ligand, namely, [{(SiMe2NPh)3‐tacn}UIV2‐N2Ph2.)] ( 2 ), was obtained by one‐electron reduction of azobenzene by the trivalent uranium compound [UIII{(SiMe2NPh)3‐tacn}] ( 1 ). Compound 2 was characterized by single‐crystal X‐ray diffraction and 1H NMR, IR, and UV/Vis/NIR spectroscopy. The magnetic properties of 2 and precursor 1 were studied by static magnetization and ac susceptibility measurements, which for the former revealed single‐molecule magnet behaviour for the first time in a mononuclear UIV compound, whereas trivalent uranium compound 1 does not exhibit slow relaxation of the magnetization at low temperatures. A first approximation to the magnetic behaviour of these compounds was attempted by combining an effective electrostatic model with a phenomenological approach using the full single‐ion Hamiltonian.  相似文献   

13.
The self‐assembly of organic TCNQF.? radicals (2‐fluoro‐7,7,8,8‐tetracyano‐p‐quinodimethane) and the anisotropic [Tb(valpn)Cu]3+ dinuclear cations produced a single‐chain magnet (SCM) involving stacking interactions of TCNQF.? radicals (H2valpn is the Schiff base from the condensation of o‐vanillin with 1,3‐diaminopropane). Static and dynamic magnetic characterizations reveal that the effective energy barrier for the reversal of the magnetization in this hetero‐tri‐spin SCM is significantly larger than the barrier of the isolated single‐molecule magnet based on the {TbCu} dinuclear core.  相似文献   

14.
This study develops the first heteropentametal extended metal atom chain (EMAC) in which a string of nickel cores is incorporated with a diruthenium unit to tune the molecular properties. Spectroscopic, crystallographic, and magnetic characterizations show the formation of a fully delocalized Ru25+ unit. This [Ru2]‐containing EMAC exhibits single‐molecule conductance four‐fold superior to that of the pentanickel complex and results in features of negative differential resistance (NDR), which are unobserved in analogues of pentanickel and pentaruthenium EMACs. A plausible mechanism for the NDR behavior is proposed for this diruthenium‐modulated EMAC.  相似文献   

15.
Time‐domain synchrotron Mössbauer spectroscopy (SMS) based on the Mössbauer effect of 161Dy has been used to investigate the magnetic properties of a DyIII‐based single‐molecule magnet (SMM). The magnetic hyperfine field of [Dy(Cy3PO)2(H2O)5]Br3?2 (Cy3PO)?2 H2O?2 EtOH is with B0=582.3(5) T significantly larger than that of the free‐ion DyIII with a 6H15/2 ground state. This difference is attributed to the influence of the coordinating ligands on the Fermi contact interaction between the s and 4f electrons of the DyIII ion. This study demonstrates that 161Dy SMS is an effective local probe of the influence of the coordinating ligands on the magnetic structure of Dy‐containing compounds.  相似文献   

16.
It is crucial to investigate the slow relaxation mechanisms of binuclear ErIII‐based single‐molecule magnets (SMMs) and explore strategies for optimizing their magnetic properties. Herein, a doped compound, [Y1.75Er0.25(thd)4Pc] ? 2C6H6 ( YEr ? 2C6H6 , Hthd=2,2,6,6‐tetramethylheptanedione, H2Pc=phthalocyanine), was synthesized by doping the paramagnetic erbium(III) compound Er2 ? 2C6H6 in the diamagnetic yttrium(III) matrix Y2 ? 2C6H6 . The doping effect was studied using SQUID magnetization measurements. The results suggest that magnetic‐site dilution improves the magnetic property from a fast relaxation of the pure ErIII compound to a typical SMM relaxation process of the doped sample. In this binuclear system, the dominant single‐ion relaxation is entangled with the neighboring ErIII ion through the intramolecular ErIII???ErIII interaction, which plays an important role in suppressing the quantum tunneling of the magnetization (QTM) process. Furthermore, the influence of lattice solvents on single‐ion relaxation was studied. By releasing the benzene molecules, compound YEr ? 2C6H6 can be successfully transformed to a desolvated sample YEr accompanied by structural alteration and improved SMM performance.  相似文献   

17.
Magnetic dipole interactions are dominate in quasi one‐dimensional (1D) molecular magnetic materials, in which TbNcPc units (Tb3+=terbium(III) ion, Nc2?=naphthalocyaninato, Pc2?=phthalocyaninato) adopt a structure similar to TbPc2 single‐molecule magnets (SMMs). The magnetic properties of the [TbNcPc]0/+ (neutral 1 and cationic 2 ) with 1D structures are significantly different from those of a magnetically diluted sample ( 3 ). In particular, the magnetic relaxation time (τ) of 2 in the low‐temperature region is five orders of magnitude slower than that of 3 . Furthermore, the coercivity (HC) of 2 remained up to about 20 K. The single‐ion anisotropy of Tb3+ ions in a 1D structure and the magnetic dipole interactions acting among molecules determines the direction of the magnetic properties. These results show that the spin dynamics can be improved by manipulating the arrangement of SMMs in the solid state.  相似文献   

18.
Coordination of the novel redox‐active phosphine‐appended aminophenol pincer ligand (PNOH2) to PdII generates a paramagnetic complex with a persistent ligand‐centered radical. The complex undergoes fully reversible single‐electron oxidation and reduction. Homolytic bond activation of diphenyldisulfide by the single‐electron reduced species leads to a ligand‐based mixed‐valent dinuclear palladium complex with a single bridging thiolate ligand. Mechanistic investigations support an unprecedented intramolecular ligand‐to‐disulfide single‐electron transfer process to induce homolytic S? S cleavage, thereby releasing a thiyl (sulfanyl) radical. This could be a new strategy for small‐molecule bond activation.  相似文献   

19.
A series of homoleptic ([TbIII(Pc)2]) and heteroleptic ([TbIII(Pc)(Pc′)]) TbIII bis(phthalocyaninate) complexes that contain different peripheral substitution patterns (i.e., tert‐butyl or tert‐butylphenoxy groups) have been synthesized in their neutral radical forms and then reduced into their corresponding anionic forms as stable tetramethylammonium/tetrabutylammonium salts. All of these compounds were spectroscopically characterized and their magnetic susceptibility properties were investigated. As a general trend, the radical forms exhibited larger energy barriers for spin reversal than their corresponding reduced compounds. Remarkably, heteroleptic complexes that contain electron‐donor moieties on one of the two Pc ligands show higher effective barriers and blocking temperatures than their homoleptic derivatives. This result is assigned to the elongation of the N? Tb distances in the substituted macrocycle, which brings the terbium(III) ion closer to the unsubstituted Pc, thus enhancing the ligand‐field effect. In particular, heteroleptic [TbIII(Pc)(Pc′)] complex 4 , which contains one octa(tert‐butylphenoxy)‐substituted Pc ring and one bare Pc ring, exhibits the highest effective barrier and blocking temperature for a single‐molecule magnet reported to date.  相似文献   

20.
We demonstrate the single‐molecule imaging of the catalytic reaction of a Zn2+‐dependent DNAzyme in a DNA origami nanostructure. The single‐molecule catalytic activity of the DNAzyme was examined in the designed nanostructure, a DNA frame. The DNAzyme and a substrate strand attached to two supported dsDNA molecules were assembled in the DNA frame in two different configurations. The reaction was monitored by observing the configurational changes of the incorporated DNA strands in the DNA frame. This configurational changes were clearly observed in accordance with the progress of the reaction. The separation processes of the dsDNA molecules, as induced by the cleavage by the DNAzyme, were directly visualized by high‐speed atomic force microscopy (AFM). This nanostructure‐based AFM imaging technique is suitable for the monitoring of various chemical and biochemical catalytic reactions at the single‐molecule level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号