首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first asymmetric hydrogenation (AH) of 2,6‐disubstituted and 2,3,6‐trisubstituted 1,5‐naphthyridines, catalyzed by chiral cationic ruthenium diamine complexes, has been developed. A wide range of 1,5‐naphthyridine derivatives were efficiently hydrogenated to give 1,2,3,4‐tetrahydro‐1,5‐naphthyridines with up to 99 % ee and full conversions. This facile and green protocol is applicable to the scaled‐up synthesis of optically pure 1,5‐diaza‐cis‐decalins, which have been used as rigid chelating diamine ligands for asymmetric synthesis.  相似文献   

2.
An enantioselective hydrogenation of disubstituted furans has been developed by using a chiral ruthenium catalyst with N‐heterocyclic carbene ligands. This reaction converts furans into valuable enantioenriched disubstituted tetrahydrofurans.  相似文献   

3.
The first example of highly enantioselective intramolecular hydroarylation of allyl aryl ethers was realized by palladium‐catalyzed reductive heck reactions utilizing a new chiral sulfinamide phosphine ligand (N‐Me‐ XuPhos ). N‐Me‐ XuPhos can be easily prepared on gram scale from readily available starting materials in a one‐pot synthesis approach. A series of optically active 2,3‐dihydrobenzofurans bearing a quaternary stereocenter were obtained in good yields and with excellent enantioselectivities. The practicality of this reaction was validated in the straightforward synthesis of CB2 receptor agonists. Moreover, deuterium was efficiently incorporated into the products.  相似文献   

4.
5.
6.
A valuable class of new heterocyclic and alicyclic prochiral α‐aminomethylacrylates has been conveniently synthesized through a three‐step transformation involving a Baylis–Hillman reaction, O‐acetylation, and a subsequent allylic amination. The corresponding novel β2‐amino acid derivatives were prepared with excellent enantioselectivities and high yields by catalytic asymmetric hydrogenation using the catalyst rhodium(Et‐Duphos) (Et‐Duphos=2′,5′,2′′,5′′‐tetraethyl‐1,2‐bis(phospholanyl)benzene)) under mild reaction conditions (up to 99 % ee and S/C=1000). The influence of the substrate on the enantioselectivity and reactivity is investigated, and the most suitable substrate configuration for the highly efficient enantioselective hydrogenation of β‐substituted α‐aminomethylacrylates under the Rh–Duphos system is reported. The current protocol provides a very practical, facile, and scalable method for the preparation of heterocyclic and alicyclic β2‐amino acids and their derivatives.  相似文献   

7.
8.
9.
10.
11.
A general and highly enantioselective method for the epoxidation of cis‐alkenylsilanes, in which the epoxysilanes were obtained with complete enantioselectivity in the presence of 0.5–2 mol % of a Ti–Salalen complex. The combination of this epoxidation method and the following transformations is a powerful approach that provides synthetically important epoxides, such as styrene oxides and geminally disubstituted epoxides, in enantiopure form.

  相似文献   


12.
The selective isomerization of strained heterocyclic compounds is an important tool in organic synthesis. An unprecedented regioselective isomerization of 2,2‐disubstituted oxetanes into homoallylic alcohols is described. The use of tris(pentafluorophenyl)borane (B(C6F5)3), a commercially available Lewis acid was key to obtaining good yields and selectivities since other Lewis acids afforded mixtures of isomers and substantial polymerization. The reaction took place under exceptionally mild reaction conditions and very low catalyst loading (0.5 mol %). DFT calculations disclose the mechanistic features of the isomerization and account for the high selectivity displayed by the B(C6F5)3 catalyst. The synthetic applicability of the new reaction is demonstrated by the preparation of γ‐chiral alcohols using iridium‐catalyzed asymmetric hydrogenation.  相似文献   

13.
14.
The first asymmetric hydrogenation of 3‐ylidenephthalides has been developed using the IrI complex of a spiro[4,4]‐1,6‐nonadiene‐based phosphine‐oxazoline ligand (SpinPHOX) as the catalyst, affording a wide variety of chiral 3‐substituted phthalides in excellent enantiomeric excesses (up to 98 % ee). The utility of the protocol has been demonstrated in the asymmetric synthesis of chiral drugs NBP and BZP precursor, as well as the natural products chuangxinol and typhaphthalide.  相似文献   

15.
The asymmetric reduction of N‐aryl imines derived from acetophenones by using Ru complexes bearing both a pybox (2,6‐bis(oxazoline)pyridine) and a monodentate phosphite ligand has been described. The catalysts show good activity with a diverse range of substrates, and deliver the amine products in very high levels of enantioselectivity (up to 99 %) under both hydrogenation and transfer hydrogenation conditions in isopropanol. From deuteration studies, a very different labeling is observed under hydrogenation and transfer hydrogenation conditions, which demonstrates the different nature of the hydrogen source in both reactions.  相似文献   

16.
The first asymmetric synthesis of 2,3‐dihydrofuro[2,3‐b]quinolines has been achieved by a cascade asymmetric aziridination/intramolecular ring‐opening process of differently substituted 3‐alkenylquinolones. Good yields and high enantioselectivities (up to 78 % yield and 95 % ee) were recorded when employing 2,2,2‐trichloroethoxysulfonamide as the nitrene source, PhI(OCOtBu)2 as the oxidant, and a chiral C2‐symmetric RhII complex as the catalyst (1 mol %). The catalyst bears two lactam motifs, which serve as binding sites for substrate coordination through supramolecular hydrogen‐bonding interactions.  相似文献   

17.
18.
A catalytic protocol for the diastereoselective synthesis of anti‐1,2‐hydroxyboronates is described. The process provides access to secondary alkyl organoborons. The deborylative 1,2‐addition reactions of alkyl 1,1‐diborons proceed in the presence of a silver(I) salt with either KOtBu or nBuLi as an activator. The catalytic diastereoselective protocol can be extended to aryl, alkenyl, and alkyl aldehydes with up to 99:1 d.r.  相似文献   

19.
20.
This review describes our recent works on the diastereo‐ and enantioselective synthesis of anti‐β‐hydroxy‐α‐amino acid esters using transition‐metal–chiral‐bisphosphine catalysts. A variety of transition metals, namely ruthenium (Ru), rhodium (Rh),iridium (Ir), and nickel (Ni), in combination with chiral bisphosphines, worked well as catalysts for the direct anti‐selective asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides, yielding anti‐β‐hydroxy‐α‐amino acid esters via dynamic kinetic resolution (DKR) in excellent yields and diastereo‐ and enantioselectivities. The Ru‐catalyzed asymmetric hydrogenation of α‐amino‐β‐ketoesters via DKR is the first example of generating anti‐β‐hydroxy‐α‐amino acids. Complexes of iridium and axially chiral bisphosphines catalyze an efficient asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides via dynamic kinetic resolution. A homogeneous Ni–chiral‐bisphosphine complex also catalyzes an efficient asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides in an anti‐selective manner. As a related process, the asymmetric hydrogenation of the configurationally stable substituted α‐aminoketones using a Ni catalyst via DKR is also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号