首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Small (4 nm) nanoparticles with a narrow size distribution, exceptional surface purity, and increased surface order, which exhibits itself as an increased presence of basal crystallographic planes, can be obtained without the use of any surfactant. These nanoparticles can be used in many applications in an as‐received state and are threefold more active towards a model catalytic reaction (oxidation of ethylene glycol). Furthermore, the superior properties of this material are interesting not only due to the increase in their intrinsic catalytic activity, but also due to the exceptional surface purity itself. The nanoparticles can be used directly (i.e., as‐received, without any cleaning steps) in biomedical applications (i.e., as more efficient drug carriers due to an increased number of adsorption sites) and in energy‐harvesting/data‐storage devices.  相似文献   

4.
5.
6.
Please recycle! An amphiphilic polystyrene‐poly(ethylene glycol) resin‐dispersion of nanoparticles of platinum (ARP‐Pt) is developed, with the nanoparticles exhibiting a narrow size distribution throughout the resin. ARP‐Pt offers a sustainable chemistry alternative as a useful and readily recyclable catalyst for the aerobic oxidation of a wide variety of alcohols.

  相似文献   


7.
Electrochemical hydrogen generation is a rising prospect for future renewable energy storage and conversion. Platinum remains a leading choice of catalyst, but because of its high cost and low natural abundance, it is critical to optimize its use. In the present study, platinum oxide nanoparticles of approximately 2 nm in diameter are deposited on carbon nitride (C3N4) nanosheets by thermal refluxing of C3N4 and PtCl2 or PtCl4 in water. These nanoparticles exhibit apparent electrocatalytic activity toward the hydrogen evolution reaction (HER) in acid. Interestingly, the HER activity increases with increasing Pt4+ concentration in the nanoparticles, and the optimized catalyst even outperforms commercial Pt/C, exhibiting an overpotential of only −7.7 mV to reach the current density of 10 mA cm−2 and a Tafel slope of −26.3 mV dec−1. The results from this study suggest that the future design of platinum oxide catalysts should strive to maximize the Pt4+ sites and minimize the formation of the less active Pt2+ species.  相似文献   

8.
The hydroxide‐exchange membrane fuel cell (HEMFC) is a promising energy conversion device. However, the development of HEMFC is hampered by the lack of platinum‐group‐metal‐free (PGM‐free) electrocatalysts for the hydrogen oxidation reaction (HOR). Now, a Ni catalyst is reported that exhibits the highest mass activity in HOR for a PGM‐free catalyst as well as excellent activity in the hydrogen evolution reaction (HER). This catalyst, Ni‐H2‐2 %, was optimized through pyrolysis of a Ni‐containing metal‐organic framework precursor under a mixed N2/H2 atmosphere, which yielded carbon‐supported Ni nanoparticles with different levels of strains. The Ni‐H2‐2 % catalyst has an optimal level of strain, which leads to an optimal hydrogen binding energy and a high number of active sites.  相似文献   

9.
10.
The kinetics of the hydrogen oxidation and the CO adsorption on a Pt (ultra)microelectrode is studied in a 0.5 M H2SO4 solution saturated with a mixture of gaseous H2 and CO at partial CO pressures p CO = 10–500 ppm. The balance between rates of diffusion and adsorption of CO at different adsorption times is studied. Studied is the effect of CO impurities in H2 on steady-state polarization curves for the hydrogen ionization and nonsteady-state curves of the oxidation current decay with time at 0.02–0.05 V. Conditions under which in a certain time interval and at a certain CO concentration the slope of an I vs. t curve is proportional to p CO are determined. The obtained dependence may be used when designing a technique for monitoring CO impurities in technical hydrogen.  相似文献   

11.
Platinum‐oxide nanoparticles were prepared through the radio‐frequency (RF) discharge sputtering of a Pt electrode in an oxygen atmosphere. The structure, particles size, electronic properties, and surface composition of the RF‐sputtered particles were studied by using transmission electron microscopy and X‐ray photoelectron spectroscopy. The application of the RF discharge method resulted in the formation of highly oxidized Pt4+ species that were stable under ultrahigh vacuum conditions up to 100 °C, indicating the capability of Pt4+–O species to play an important role in the oxidation catalysis under real conditions. The thermal stability and reaction probability of Pt4+ oxide species were analyzed and compared with those of Pt2+ species. The reaction probability of PtO2 nanoparticles at 90 °C was found to be about ten times higher than that of PtO‐like structures.  相似文献   

12.
《化学:亚洲杂志》2017,12(1):21-26
Dendritic platinum nanoparticles (DPNs) have been synthesized from l ‐ascorbic acid and an amphiphilic non‐ionic surfactant (Brij‐58) via a sonochemical method. The particle size and shape of the DPNs could be tuned by changing the reduction temperature, resulting in a uniform DPN with a size of 23 nm or 60 nm. The facets of DPNs have been studied by high‐resolution transmission electron microscopy. The cytotoxicity of DPNs has been investigated using human embryonic kidney cells (HEK‐293), and the biological adaptability exhibited by DPNs has opened a pathway to biomedical applications such as drug‐delivery systems, photothermal treatment, and biosensors.  相似文献   

13.
We introduce the synthesis and in‐depth characterization of platinum(II)‐crosslinked single‐chain nanoparticles (PtII‐SCNPs) to demonstrate their application as a recyclable homogeneous catalyst. Specifically, a linear precursor copolymer of styrene and 4‐(diphenylphosphino)styrene was synthesized via nitroxide‐mediated polymerization. The triarylphosphine ligand moieties along the backbone allowed for the intramolecular crosslinking of single chains via the addition of [Pt(1,5‐cyclooctadiene)Cl2] in dilute solution. The successful formation of well‐defined PtII‐SCNPs was evidenced by size exclusion chromatography, dynamic light scattering, nuclear magnetic resonance (1H, 31P{1H}, 195Pt), and diffusion‐ordered spectroscopy. Finally, the activity of the PtII‐SCNPs as homogeneous, yet recyclable catalyst was successfully demonstrated using the example of the amination of allyl alcohol.  相似文献   

14.
《化学:亚洲杂志》2018,13(16):2077-2084
Platinum nanoparticles encapsulated into zeolite Y (Pt@Y catalyst) exhibit excellent catalytic selectivity in the hydrogenation of substituted nitroarenes to form the corresponding aromatic amines, even after complete conversion. With the hydrogenation of p‐chloronitrobenzene as a model, the role of zeolite encapsulation toward perfect selectivity can be attributed to constraint of the substrate adsorbed on the platinum surface in an end‐on conformation. This conformation results in the activation of only one adsorbed group, with little influence on the other one in the molecule. Owing to a much lower apparent activation energy of Pt@Y for the hydrogenation of a separately adsorbed nitro group than that of the adsorbed chloro group, the Pt@Y catalyst can prevent hydrodechlorination of p‐chloronitrobenzene under mild conditions. Moreover, such a conformation results in a reduced adsorption energy of target p‐chloroaniline on the platinum surface; thus suppressing the reactivity of hydrodechlorination of p‐chloroaniline to circumvent further C−Cl bond breakage.  相似文献   

15.
Two donor–bridge–acceptor conjugates (5,10,15,20‐tetrakis[4‐(N,N‐diphenylaminobenzoate)phenyl] porphyrin (TPPZ) and 5,10,15,20‐tetrakis[4‐(N,N‐diphenylaminostyryl)phenyl] porphyrin (TPPX)) were covalently linked to triphenylamine (TPA) at the meso‐position of porphyrin ring. The triphenylamine entities were expected to act as energy donors and the porphyrins to act as an energy acceptor. In this paper, we report on the synthesis of these multibranched‐porphyrin‐functionalized Pt nanocomposites. The conjugates used here not only served as a stabilizer to prevent agglomeration of Pt nanoparticles, but also as a light‐harvesting photosensitizer. The occurrence of photoinduced electron‐transfer processes was confirmed by time‐resolved fluorescence and photoelectrochemical spectral measurements. The different efficiencies for energy and electron transfer in the two multibranched porphyrins and the functionalized Pt nanocomposites were attributed to diverse covalent linkages. Moreover, in the reduction of water to produce H2, the photocatalytic activity of the Pt nanocomposite functionalized by TPPX, in which the triphenylamine and porphyrin moieties are bonded through an ethylene bridge, was much higher than that of the platinum nanocomposite functionalized by TPPZ, in which the two moieties are bonded through an ester. This investigation demonstrates the fundamental advantages of constructing donor–bridge–acceptor conjugates as highly efficient photosensitizers based on efficient energy and electron transfer.  相似文献   

16.
The study of energy and charge transfer during chemical reactions on metals is of great importance for understanding the phenomena involved in heterogeneous catalysis. Despite extensive studies, very little is known about the nature of hot electrons generated at solid–liquid interfaces. Herein, we report remarkable results showing the detection of hot electrons as a chemicurrent generated at the solid–liquid interface during decomposition of hydrogen peroxide (H2O2) catalyzed on Schottky nanodiodes. The chemicurrent reflects the activity of the catalytic reaction and the state of the catalyst in real time. We show that the chemicurrent yield can reach values up to 10?1 electrons/O2 molecule, which is notably higher than that for solid–gas reactions on similar nanodiodes.  相似文献   

17.
The morphology‐ and size‐controlled synthesis of branched Pt nanostructures on graphene is highly favorable for enhancing the electrocatalytic activity and stability of Pt. Herein, a facile approach is developed for the efficient synthesis of well‐dispersed Pt nanoflowers (PtNFs) on the surface of polydopamine (PDA)‐modified reduced graphene oxide (PDRGO), denoted as PtNFs/PDRGO, in high yield. The synthesis was performed by a simple heating treatment of an aqueous solution that contained K2PtCl4 and PDA‐modified graphene oxide (GO) without the need for any additional reducing agent, seed, surfactant, or organic solvent. The coated PDA serves not only as a reducing agent, but also as cross‐linker to anchor and stabilize PtNFs on the PDRGO support. The as‐prepared PtNFs/PDRGO hybrid, with spatially and locally separated PtNFs on PDRGO, exhibits superior electrocatalytic activity and stability toward both methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) in alkaline solutions.  相似文献   

18.
Improving the efficiency of electron–hole separation and charge‐carrier utilization plays a central role in photocatalysis. Herein, Pt nanoparticles of ca. 3 nm are incorporated inside or supported on a representative metal–organic framework (MOF), UiO‐66‐NH2, denoted as Pt@UiO‐66‐NH2 and Pt/UiO‐66‐NH2, respectively, for photocatalytic hydrogen production via water splitting. Compared with the pristine MOF, both Pt‐decorated MOF nanocomposites exhibit significantly improved yet distinctly different hydrogen‐production activities, highlighting that the photocatalytic efficiency strongly correlates with the Pt location relative to the MOF. The Pt@UiO‐66‐NH2 greatly shortens the electron‐transport distance, which favors the electron–hole separation and thereby yields much higher efficiency than Pt/UiO‐66‐NH2. The involved mechanism has been further unveiled by means of ultrafast transient absorption and photoluminescence spectroscopy.  相似文献   

19.
20.
We observed the collision of single Pt nanoparticles (NPs) onto an Au nanowire (NW) electrode by using electrocatalytic amplification. Previously, such observations had typically been performed by using a microscale disk‐type ultramicroelectrode (UME). The use of a NW electrode decreased the background noise current and provided a shielding effect, owing to adsorption of the NPs onto the insulating sheath. Therefore, the transient current signal that was caused by the collision of single NPs could be more clearly distinguished from the background current by using a NW electrode instead of a UME. Furthermore, the use of a NW electrode increased the collisional frequency and the magnitude of the transient current signal. The experimental data were analyzed by using a theoretical model and a random walk simulation model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号