首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucagon‐like peptide‐1 (GLP‐1) receptor (GLP‐1R), glucagon (GCG) receptor (GCGR), and glucose‐dependent insulinotropic polypeptide (GIP, also known as gastric inhibitory polypeptide) receptor (GIPR), are three metabolically related peptide hormone receptors. A novel approach to the generation of multifunctional antibody agonists that activate these receptors has been developed. Native or engineered peptide agonists for GLP‐1R, GCGR, and GIPR were fused to the N‐terminus of the heavy chain or light chain of an antibody, either alone or in pairwise combinations. The fusion proteins have similar in vitro biological activities on the cognate receptors as the corresponding peptides, but circa 100‐fold longer plasma half‐lives. The GLP‐1R mono agonist and GLP‐1R/GCGR dual agonist antibodies both exhibit potent effects on glucose control and body weight reduction in mice, with the dual agonist antibody showing enhanced activity in the latter.  相似文献   

2.
Glucagon‐like peptide‐1 (GLP‐1) receptor (GLP‐1R), glucagon (GCG) receptor (GCGR), and glucose‐dependent insulinotropic polypeptide (GIP, also known as gastric inhibitory polypeptide) receptor (GIPR), are three metabolically related peptide hormone receptors. A novel approach to the generation of multifunctional antibody agonists that activate these receptors has been developed. Native or engineered peptide agonists for GLP‐1R, GCGR, and GIPR were fused to the N‐terminus of the heavy chain or light chain of an antibody, either alone or in pairwise combinations. The fusion proteins have similar in vitro biological activities on the cognate receptors as the corresponding peptides, but circa 100‐fold longer plasma half‐lives. The GLP‐1R mono agonist and GLP‐1R/GCGR dual agonist antibodies both exhibit potent effects on glucose control and body weight reduction in mice, with the dual agonist antibody showing enhanced activity in the latter.  相似文献   

3.
The X‐ray crystal structure of a bovine antibody (BLV1H12) revealed a unique structure in its ultralong heavy chain complementarity determining region 3 (CDR3H) that folds into a solvent‐exposed β‐strand “stalk” fused to a disulfide crosslinked “knob” domain. We have substituted an antiparallel heterodimeric coiled‐coil motif for the β‐strand stalk in this antibody. The resulting antibody (Ab‐coil) expresses in mammalian cells and has a stability similar to that of the parent bovine antibody. MS analysis of H–D exchange supports the coiled‐coil structure of the substituted peptides. Substitution of the knob‐domain of Ab‐coil with bovine granulocyte colony‐stimulating factor (bGCSF) results in a stably expressed chimeric antibody, which proliferates mouse NFS‐60 cells with a potency comparable to that of bGCSF. This work demonstrates the utility of this novel coiled‐coil CDR3 motif as a means for generating stable, potent antibody fusion proteins with useful pharmacological properties.  相似文献   

4.
5.
Herein, we present the peptide‐guided assembly of complementary fragments of designed armadillo repeat proteins (dArmRPs) to create proteins that bind peptides not only with high affinity but also with good selectivity. We recently demonstrated that complementary N‐ and C‐terminal fragments of dArmRPs form high‐affinity complexes that resemble the structure of the full‐length protein, and that these complexes bind their target peptides. We now demonstrate that dArmRPs can be split such that the fragments assemble only in the presence of a templating peptide, and that fragment mixtures enrich the combination with the highest affinity for this peptide. The enriched fragment combination discriminates single amino acid variations in the target peptide with high specificity. Our results suggest novel opportunities for the generation of new peptide binders by selection from dArmRP fragment mixtures.  相似文献   

6.
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections in children. We have generated an epitope‐specific RSV vaccine by grafting a neutralizing epitope (F‐epitope) in its native conformation into an immunoglobulin scaffold. The resulting antibody fusion exhibited strong binding affinity to Motavizumab, an RSV neutralizing antibody, and effectively induced potent neutralizing antibodies in mice. This work illustrates the potential of the immunoglobulin molecule as a scaffold to present conformationally constrained B‐cell epitopes.  相似文献   

7.
Human insulin‐like peptide‐6 (INSL‐6) belongs to the insulin superfamily and shares the distinctive disulfide bond configuration of human insulin. In this report we present the first chemical synthesis of INSL‐6 utilizing fluorenylmethyloxycarbonyl‐based (Fmoc) solid‐phase peptide chemistry and regioselective disulfide bond construction protocols. Due to the presence of an oxidation‐sensitive tryptophan residue, two new orthogonal synthetic methodologies were developed. The first method involved the identification of an additive to suppress the oxidation of tryptophan during iodine‐mediated S‐acetamidomethyl (Acm) deprotection and the second utilized iodine‐free, sulfoxide‐directed disulfide bond formation. The methodologies presented here offer an efficient synthetic route to INSL‐6 and will further improve synthetic access to other multiple‐disulfide‐containing peptides with oxidation‐sensitive residues.  相似文献   

8.
Fluorescent proteins are transformative tools; thus, any brightness increase is a welcome improvement. We invented the “vGFP strategy” based on structural analysis of GFP bound to a single‐domain antibody, predicting tunable dimerization, enhanced brightness (ca. 50 %), and improved pH resistance. We verified all of these predictions using biochemistry, crystallography, and single‐molecule studies. We applied the vsfGFP proteins in three diverse scenarios: single‐step immunofluorescence in vitro (3× brighter due to dimerization); expression in bacteria and human cells in vivo (1.5× brighter); and protein fusions showing better pH resistance in human cells in vivo. The vGFP strategy thus allows upgrading of existing applications, is applicable to other fluorescent proteins, and suggests a method for tuning dimerization of arbitrary proteins and optimizing protein properties in general.  相似文献   

9.
The self-recognition and self-assembly of biomolecules are spontaneous processes that occur in Nature and allow the formation of ordered structures, at the nanoscale or even at the macroscale, under thermodynamic and kinetic equilibrium as a consequence of specific and local interactions. In particular, peptides and peptidomimetics play an elected role, as they may allow a rational approach to elucidate biological mechanisms to develop new drugs, biomaterials, catalysts, or semiconductors. The forces that rule self-recognition and self-assembly processes are weak interactions, such as hydrogen bonding, electrostatic attractions, and van der Waals forces, and they underlie the formation of the secondary structure (e.g., α-helix, β-sheet, polyproline II helix), which plays a key role in all biological processes. Here, we present recent and significant examples whereby design was successfully applied to attain the desired structural motifs toward function. These studies are important to understand the main interactions ruling the biological processes and the onset of many pathologies. The types of secondary structure adopted by peptides during self-assembly have a fundamental importance not only on the type of nano- or macro-structure formed but also on the properties of biomaterials, such as the types of interaction, encapsulation, non-covalent interaction, or covalent interaction, which are ultimately useful for applications in drug delivery.  相似文献   

10.
11.
12.
Photocaged antibody fragments, termed photobodies, have been developed that are impaired in their antigen‐binding capacity and can be activated by irradiation with UV light (365 nm). This rational design concept builds on the selective photocaging of a single tyrosine in a nanobody (a single‐domain antibody fragment). Tyrosine is a frequently occurring residue in central positions of the paratope region. o‐Nitrobenzyl‐protected tyrosine variants were incorporated into four nanobodies, including examples directed against EGFR and HER2, and photodeprotection restores the native sequence. An anti‐GFP photobody exhibited an at least 10 000‐fold impaired binding affinity before photodeprotection compared with the parent nanobody. A bispecific nanobody–photobody fusion protein was generated to trigger protein heterodimerization by light. Photoactivatable antibodies are expected to become versatile protein reagents and to enable novel approaches in diagnostic and therapeutic applications.  相似文献   

13.
14.
An allele‐specific voltammetric genoassay for the detection of allele‐specific toll‐like receptor‐2 gene arg753gln polymorphism (TLR‐2) from polymerase chain reaction (PCR) amplified real samples was described in this study. Meldola blue (MDB), an intercalator molecule, was used as hybridization label. The wild‐type and mutant type oligonucleotide probes were immobilized onto disposable graphite electrode surfaces by covalent attachment method. The extent of hybridization between probe and target sequences was determined by using differential pulse voltammetry (DPV). As a result of the interaction between MDB and DNA at electrode surface, the MDB signal observed from probe sequence before hybridization and after hybridization with MM sequence is lower than that observed after hybridization with complementary sequence. The differences between the MDB reduction peaks obtained from probe modified, hybrid modified and MM modified electrode were used to detect TLR‐2 from PCR amplified real samples. The discrimination of homozygous and heterozygous alleles was also established by comparing the peak currents of MDB reduction signals. Numerous factors affecting the target hybridization and indicator binding reactions are optimized to maximize the sensitivity.  相似文献   

15.
As a unique and unappreciated protein posttranslational modification, arginine N‐glycosylation was recently discovered to play an important role in the process that bacteria counteract host defenses. To provide chemical tools for further proteomic and biochemical studies on arginine N‐glycosylation, we report the first general strategy for a rapid and cost‐effective synthesis of glycopeptides carrying single or multiple arginine N‐GlcNAcyl groups. These glycopeptides were successfully utilized to generate the first antibodies that can specifically recognize arginine N‐GlcNAcylated peptides or proteins in a sequence‐independent manner.  相似文献   

16.
17.
18.
Blockade of the protein–protein interaction between the transmembrane protein programmed cell death protein 1 (PD‐1) and its ligand PD‐L1 has emerged as a promising immunotherapy for treating cancers. Using the technology of mirror‐image phage display, we developed the first hydrolysis‐resistant D ‐peptide antagonists to target the PD‐1/PD‐L1 pathway. The optimized compound DPPA‐1 could bind PD‐L1 at an affinity of 0.51 μM in vitro. A blockade assay at the cellular level and tumor‐bearing mice experiments indicated that DPPA‐1 could also effectively disrupt the PD‐1/PD‐L1 interaction in vivo. Thus D ‐peptide antagonists may provide novel low‐molecular‐weight drug candidates for cancer immunotherapy.  相似文献   

19.
Disulfide‐rich peptides containing three or more disulfide bonds are promising therapeutic and diagnostic agents, but their preparation is often limited by the tedious and low‐yielding folding process. We found that a single cystine‐to‐diaminodiacid replacement could significantly increase the folding efficiency of disulfide‐rich peptides and thus improve their production yields. The practicality of this strategy was demonstrated by the synthesis and folding of derivatives of the μ‐conotoxin SIIIA, the preclinical hormone hepcidin, and the trypsin inhibitor EETI‐II. NMR and X‐ray crystallography studies confirmed that these derivatives of disulfide‐rich peptide retained the correct three‐dimensional conformations. Moreover, the cystine‐to‐diaminodiacid replacement enabled structural tuning, thereby leading to an EETI‐II derivative with higher bioactivity than the native peptide.  相似文献   

20.
Biodegradable hydrogels were synthesized by the click reaction of 4‐arm azido‐terminated PEG differing in molecular weight (2 100 and 8 800) and two alkyne‐terminated peptides: [alkyne]‐GFLGK‐[alkyne] and ([alkyne]‐GFLG)2K. The physical properties of in situ formed hydrogels were examined. The hydrogels were highly elastic as determined by rheological and microrheological studies. Swelling degree and enzymatic degradation by papain were dependent on the molecular weight of the PEG, but not the peptide. For PEG8800‐based hydrogels, time‐course analysis of degradation showed that the molecular weight of the soluble fraction quickly reached the PEG precursor value. These findings may guide future design of hydrogels with controllable mechanical properties and enzymatic degradability.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号