首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Twenty-one zeolitic imidazolate metal-organic frameworks based on Zn connectors (ZIFs) are derived and compared to known imidazolate networks. Not-yet-synthesized zinc imidazolates are identified on the basis of DFT total energy scoring. The structure with lowest energy is not porous and represents an unusual structure type with zni topology. Total energy scoring indicates the lcs and pcb networks as reliable ZIF candidates. The intrinsic channel chirality of the lcs network makes this rare topology an attractive target for the synthetic effort. Among the porous ZIFs candidates, the sodalite type, sod, is also found.  相似文献   

2.
High‐entropy materials refer to a kind of materials in which five or more metal species were incorporated deliberately into a single lattice with random occupancy. Up to now, such a concept has been only restricted to hard materials, such as high‐entropy alloys and ceramics. Herein we report the synthesis of hybrid high‐entropy materials, polymetallic zeolitic imidazolate framework (also named as high‐entropy zeolitic imidazolate framework, HE‐ZIF), via entropy‐driven room‐temperature mechanochemistry. HE‐ZIF contains five metals including ZnII, CoII, CdII, NiII, and CuII which are dispersed in the ZIF structure randomly. Moreover, HE‐ZIF shows enhanced catalytic conversion of CO2 into carbonate compared with ZIF‐8 presumably a result of the synergistic effect of the five metal ions as Lewis acid in epoxide activation.  相似文献   

3.
A new zeolitic–imidazolate framework (ZIF), [Zn(imidazolate)2?x(benzimidazolate)x], that has the zeolite A (LTA) framework topology and contains relatively inexpensive organic linkers has been revealed using in situ atomic force microscopy. The new material was grown on the structure‐directing surface of [Zn(imidazolate)1.5(5‐chlorobenzimidazolate)0.5] (ZIF‐76) crystals, a metal–organic framework (MOF) that also possesses the LTA framework topology. The crystal growth processes for both [Zn(imidazolate)2?x(benzimidazolate)x] and ZIF‐76 were observed using in situ atomic force microscopy; it is the first time the growth process of a nanoporous material with the complex zeolite A (LTA) framework topology has been monitored temporally at the nanoscale. The results reveal the crystal growth mechanisms and possible surface terminations on the {100} and {111} facets of the materials under low supersaturation conditions. Surface growth of these structurally complex materials was found to proceed through both “birth‐and‐spread” and spiral crystal‐growth mechanisms, with the former occurring through the nucleation and spreading of metastable and stable sub‐layers reliant on the presence of non‐framework species to bridge the framework during formation. These results support the notion that the latter process may be a general mechanism of surface crystal growth applicable to numerous crystalline nanoporous materials of differing complexity and demonstrate that the methodology of seeded crystal growth can be used to discover previously unobtainable ZIFs and MOFs with desirable framework compositions.  相似文献   

4.
Hierarchical porous zeolitic imidazolate frameworks (HZIFs) are promising materials for several applications, including adsorption, separation, and nanomedicine. Herein, the conversion of zinc hydroxide nitrate nanosheets into HZIF-8 nanocomposite with graphene oxide (GO) and magnetic nanoparticles (MNPs) is reported. The conversion takes place at room temperature in water. This approach has been successfully applied for the formation of leaf-like ZIF(ZIF-L), and their nanocomposites with nanoparticles, such as GO and MNPs. This method offers a simple approach for the synthesis of tunable pore structure using nanoparticles and fast room temperature conversion (30 min) without any visible residual impurities of zinc hydroxide nitrates. The applications of HZIF-8, ZIF-L, and their nanocomposites, for CO2 sorption, exhibit excellent adsorption properties. The synthesized composites exhibit enhanced CO2 adsorption capacity due to the synergistic effect between nanoparticles (GO, or MNPs), and ZIF-8. The materials have good potential for further applications.  相似文献   

5.
Processing metal–organic frameworks (MOFs) as films with controllable thickness on a substrate is increasingly crucial for many applications to realize function integration and performance optimization. Herein, we report a facile cathodic deposition process that enables the large‐area preparation of uniform films of zeolitic imidazolate frameworks (ZIF‐8, ZIF‐71, and ZIF‐67) with highly tunable thickness ranging from approximately 24 nm to hundreds of nanometers. Importantly, this oxygen‐reduction‐triggered cathodic deposition does not lead to the plating of reduced metals (Zn and Co). It is also operable cost‐effectively in the absence of supporting electrolyte and facilitates the construction of well‐defined sub‐micrometer‐sized heterogeneous structures within ZIF films.  相似文献   

6.
Carbon aerogels (CAs) with 3D interconnected networks hold promise for application in areas such as pollutant treatment, energy storage, and electrocatalysis. In spite of this, it remains challenging to synthesize high‐performance CAs on a large scale in a simple and sustainable manner. We report an eco‐friendly method for the scalable synthesis of ultralight and superporous CAs by using cheap and widely available agarose (AG) biomass as the carbon precursor. Zeolitic imidazolate framework‐8 (ZIF‐8) with high porosity is introduced into the AG aerogels to increase the specific surface area and enable heteroatom doping. After pyrolysis under inert atmosphere, the ZIF‐8/AG‐derived nitrogen‐doped CAs show a highly interconnected porous mazelike structure with a low density of 24 mg cm?3, a high specific surface area of 516 m2 g?1, and a large pore volume of 0.58 cm?3 g?1. The resulting CAs exhibit significant potential for application in the adsorption of organic pollutants.  相似文献   

7.
The peptide‐based porous 3D framework, ZnCar, has been synthesized from Zn2+ and the natural dipeptide carnosine (β‐alanyl‐L ‐histidine). Unlike previous extended peptide networks, the imidazole side chain of the histidine residue is deprotonated to afford Zn–imidazolate chains, with bonding similar to the zeolitic imidazolate framework (ZIF) family of porous materials. ZnCar exhibits permanent microporosity with a surface area of 448 m2 g?1, and its pores are 1D channels with 5 Å openings and a characteristic chiral shape. This compound is chemically stable in organic solvents and water. Single‐crystal X‐ray diffraction (XRD) showed that the ZnCar framework adapts to MeOH and H2O guests because of the torsional flexibility of the main His‐β‐Ala chain, while retaining the rigidity conferred by the Zn–imidazolate chains. The conformation adopted by carnosine is driven by the H bonds formed both to other dipeptides and to the guests, permitting the observed structural transformations.  相似文献   

8.
Hydrophobic zeolitic imidazolate frameworks (ZIFs) with the chabazite ( CHA ) topology are synthesized by incorporating two distinct imidazolate links. Zn(2‐mIm)0.86(bbIm)1.14 (ZIF‐300), Zn(2‐mIm)0.94(cbIm)1.06 (ZIF‐301), and Zn(2‐mIm)0.67(mbIm)1.33 (ZIF‐302), where 2‐mIm=2‐methylimidazolate, bbIm=5(6)‐bromobenzimidazolate, cbIm=5(6)‐chlorobenzimidazolate, and mbIm=5(6)‐methylbenzimidazolate, were prepared by reacting zinc nitrate tetrahydrate and 2‐mIm with the respective bIm link in a mixture of N,N‐dimethylformamide (DMF) and water. Their structures were determined by single‐crystal X‐ray diffraction and their permanent porosity shown. All of these structures are hydrophobic as confirmed by water adsorption isotherms. All three ZIFs are equally effective at the dynamic separation of CO2 from N2 under both dry and humid conditions without any loss of performance over three cycles and can be regenerated simply by using a N2 flow at ambient temperature.  相似文献   

9.
The facile synthesis of a porous carbon material that is doped with iron‐coordinated nitrogen active sites (FeNC‐70) is demonstrated by following an inexpensive synthetic pathway with a zeolitic imidazolate framework (ZIF‐70) as a template. To emphasize the possibility of tuning the porosity and surface area of the resulting carbon materials based on the structure of the parent ZIF, two other ZIFs, that is, ZIF‐68 and ZIF‐69, are also synthesized. The resulting active carbon material that is derived from ZIF‐70, that is, FeNC‐70, exhibits the highest BET surface area of 262 m2 g?1 compared to the active carbon materials that are derived from ZIF‐68 and ZIF‐69. The HR‐TEM images of FeNC‐70 show that the carbon particles have a bimodal structure that is composed of a spherical macroscopic pore (about 200 nm) and a mesoporous shell. X‐ray photoelectron spectroscopy (XPS) reveals the presence of Fe‐N‐C moieties, which are the primary active sites for the oxygen‐reduction reaction (ORR). Quantitative estimation by using EDAX analysis reveals a nitrogen content of 14.5 wt. %, along with trace amounts of iron (0.1 wt. %), in the active FeNC‐70 catalyst. This active porous carbon material, which is enriched with Fe‐N‐C moieties, reduces the oxygen molecule with an onset potential at 0.80 V versus NHE through a pathway that involves 3.3–3.8 e? under acidic conditions, which is much closer to the favored 4 e? pathway for the ORR. The onset potential of FeNC‐70 is significantly higher than those of its counterparts (FeNC‐68 and FeNC‐69) and of other reported systems. The FeNC‐based systems also exhibit much‐higher tolerance towards MeOH oxidation and electrochemical stability during an accelerated durability test (ADT). Electrochemical analysis and structural characterizations predict that the active sites for the ORR are most likely to be the in situ generated N? FeN2+2/C moieties, which are distributed along the carbon framework.  相似文献   

10.
Dense and homogeneous metal–organic framework (MOF) coatings on functional bead surfaces are easily prepared by using intermediate sacrificial metal oxide coatings containing the metal precursor of the MOF. Polystyrene (PS) beads are coated with a ZnO layer to give ZnO@PS core–shell beads. The ZnO@PS beads are reactive in the presence of 2‐methylimidazole to transform part of the ZnO coating into a porous zeolitic imidazolate framework‐8 (ZIF‐8) external shell positioned above the internal ZnO precursor shell. The obtained ZIF‐8@ZnO@PS beads can be easily packed in column format for flow‐through applications, such as the solid‐phase extraction of trace priority‐listed environmental pollutants. The prepared material shows an excellent permeance to flow when packed as a column to give high enrichment factors, facile regeneration, and excellent reusability for the extraction of the pollutant bisphenol A. It also shows an outstanding performance for the simultaneous enrichment of mixtures of endocrine disrupting chemicals (bisphenol A, 4‐tert‐octylphenol and 4‐n‐nonylphenol), facilitating their analysis when present at very low levels (<1 μg L?1) in drinking waters. For the extraction of the pollutant bisphenol A, the prepared ZIF‐8@ZnO@PS beads also show a superior extraction and preconcentration capacity to that of the PS beads used as precursors and the composite materials obtained by the direct growth of ZIF‐8 on the surface of the PS beads in the absence of metal oxide intermediate coatings.  相似文献   

11.
The zeolitic imidazolate framework ZIF‐4 has recently been shown to exhibit large structural flexibility as a response to hydrostatic pressures, going from an open pore phase ( ZIF ‐ 4 ( Zn )‐ op ) to a closed pore phase ( ZIF ‐ 4 ( Zn )‐ cp ). The use of diamond anvil cell (DAC) setups has so far restricted thorough experimental insight into the evolution of lattice parameters at pressures below p < 0.1 GPa. Here we revisit the high‐pressure properties of ZIF‐4(Zn) by applying a new high‐pressure powder X‐ray diffraction setup that allows for tracking the evolution of lattice parameters in pressure increments as small as Δp = 0.005 GPa in the pressure range p = ambient – 0.4 GPa; a pressure resolution that cannot be achieved by using traditional DACs. We find ZIF‐4(Zn) has a bulk modulus of K( ZIF ‐ 4 ( Zn )‐ op ) = 2.01 ± 0.05 GPa and K( ZIF ‐ 4 ( Zn )‐ cp ) = 4.39 ± 0.20 GPa, clarifying and confirming some ambiguous results that have been reported previously.  相似文献   

12.
We report the supercell crystal structure of a ZIF‐8 analog substituted imidazolate metal–organic framework (SIM‐1) obtained by combining solid‐state nuclear magnetic resonance and powder X‐ray diffraction experiments with density functional theory calculations.  相似文献   

13.
Metal–organic framework (MOF) materials have an enormous potential in separation applications, but to realize their potential as semipermeable membranes they need to be assembled into thin continuous macroscopic films for fabrication into devices. By using a facile immersion technique, we prepared ultrathin, continuous zeolitic imidazolate framework (ZIF‐8) membranes on titania‐functionalized porous polymeric supports. The coherent ZIF‐8 layer was surprisingly flexible and adhered well to the support, and the composite membrane could sustain bending and elongation. The membranes exhibited molecular sieving behavior, close to the theoretical permeability of ZIF‐8, with hydrogen permeance up to 201×10?7 mol m?2 s?1 Pa?1 and an ideal H2/CO2 selectivity of 7:1. This approach offers significant opportunities to exploit the unique properties of MOFs in the fabrication of separation and sensing devices.  相似文献   

14.
A convenient method for the confined incorporation of highly active bimetallic PdCo nanocatalysts within a hollow and porous metal–organic framework (MOF) support is presented. Several chemical conversions occur simultaneously during the one‐step low temperature pyrolysis of well‐designed polystyrene@ZIF‐67/Pd2+ core–shell microspheres, where ZIF (zeolitic imidazolate framework) is a subclass of MOF: the polystyrene core is removed, resulting in a beneficial hollow and porous ZIF support; the ZIF‐67 shell acts as a well‐defined porous support and as a felicitous Co2+ supplier for metal nanoparticle formation; and Pd2+ and Co2+ are reduced to form catalytically active bimetallic PdCo nanoparticles in the well‐defined micropores, inducing the confined growth of PdCo nanoparticles with excellent dispersity.  相似文献   

15.
RHO zeolitic imidazolate framework (ZIF), Zn1.33(O.OH)0.33(nim)1.167(pur), crystals with a rhombic dodecahedral morphology were synthesized by a solvothermal process. The growth of the crystals was studied over time using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X‐ray diffraction (PXRD) and Brunauer–Emmett–Teller (BET) analyses, and a reversed crystal growth mechanism was revealed. Initially, precursor materials joined together to form disordered aggregates, which then underwent surface recrystallization forming a core–shell structure, in which a disordered core is encased in a layer of denser, less porous crystal. When the growth continued, the shell became less and less porous, until it was a layer of true single crystal. The crystallization then extended from the surface to the core over a six‐week period until, eventually, true single crystals were formed.  相似文献   

16.
A series of dual‐metal zeolitic imidazolate framework (ZIF) crystals with SOD and RHO topologies was synthesised by metal substitution from ZIF‐108 (Zn(2‐nitroimidazolate)2, SOD topology) as the parent material. This was based on the concept that metal substitution of ZIF‐108 requires a much lower activation energy than homogenous nucleation owing to the metastability of ZIF‐108. In‐depth investigations of the formation processes of the daughter ZIFs indicated that the transformation of ZIF‐108 is a dissolution/heterogeneous nucleation process. Typical isostructural Co2+ substitution mainly occurs at the outer surface of ZIF‐108 and results in a core–shell structure. On the contrary, the Cu2+‐substituted ZIF has a RHO topology with a homogeneous distribution of Cu2+ ions in the structure. Substitution with Ni2+ resulted in a remarkable enhancement in adsorption selectivity toward CO2 over N2 by a factor of up to 227. With Co2+‐substituted nanoparticles as inorganic filler, a mixed matrix membrane based on polysulfone displayed greatly improved performance in the separation of H2/CH4, CO2/N2 and CO2/CH4.  相似文献   

17.
The outstanding properties such as large surface area, diverse structure, and accessible tunnels and cages make metal organic frameworks (MOFs) attractive as novel separation media in separation sciences. However, the utilization of MOFs in EKC has not been reported before. Here we show the exploration of zeolitic imidazolate framework‐8 (ZIF‐8), one of famous MOFs, as the pseudostationary phase (PSP) in EKC. ZIF‐8 nanocrystals were used as the PSP through dispersing in the running buffer (20 mM phosphate solution containing a 1% v/v methanol (pH 9.2)) to enhance the separation of the phenolic isomers (p‐benzenediol, m‐benzenediol, o‐benzenediol, m‐nitrophenol, p‐nitrophenol, and o‐nitrophenol). ZIF‐8 nanocrystals in the running buffer were negatively charged, and interacted with the phenolic hydroxyl groups of the analytes, and thus greatly improved the separation of the phenolic isomers. Inclusion of 200 mg L?1 ZIF‐8 in the running buffer as the background electrolyte gave a baseline separation of the phenolic isomers within 4 min. The relative standard deviations for five replicate separations of the phenolic isomers were 0.2–1.1% for migration time and 4.5–9.7% for peak area. The limits of detection varied from 0.44 to 2.0 mg L?1. The results show that nanosized MOFs are promising for application in EKC.  相似文献   

18.
(110)‐oriented zeolitic imidazolate framework (ZIF)‐8 thin films with controllable thickness are successfully deposited on indium tin oxide (ITO) electrodes at room temperature. The method applied uses 3‐aminopropyltriethoxysilane (APTES) in the form of self‐assembled monolayers (SAMs), followed by a subsequent adoption of the layer‐by‐layer (LBL) method. The crystallographic preferential orientation (CPO) index shows that the ZIF‐8 thin films are (110)‐oriented. A possible mechanism for the growth of the (110)‐oriented ZIF‐8 thin films on 3‐aminopropyltriethoxysilane modified ITO is proposed. The observed cross‐sectional scanning electron microscopy (SEM) images and photoluminescent (PL) spectra of the ZIF‐8 thin films indicate that the thickness of the ZIF‐8 layers is proportional to the number of growth cycles. The extension of such a SAM method for the fabrication of ZIF‐8 thin films as described herein should be applicable in other ZIF materials, and the as‐prepared ZIF‐8 thin films on ITO may be explored for photoelectrochemical applications.  相似文献   

19.
The separation of pentanol isomer mixtures is shown to be very efficient using the nanoporous adsorbent zeolitic imidazolate framework ZIF‐77. Through molecular simulations, we demonstrate that this material achieves a complete separation of linear from monobranched—and these from dibranched—isomers. Remarkably, the adsorption and diffusion behaviors follow the same decreasing trend, produced by the channel size of ZIF‐77 and the guest shape. This separation based on molecular branching applies to alkanes and alcohols and promises to encompass numerous other functional groups.  相似文献   

20.
While zeolitic imidazolate framework, ZIF‐8, membranes show impressive propylene/propane separation, their throughput needs to be greatly improved for practical applications. A method is described that drastically reduces the effective thickness of ZIF‐8 membranes, thereby substantially improving their propylene permeance (that is, flux). The new strategy is based on a controlled single‐crystal to single‐crystal linker exchange of 2‐methylimidazole in ZIF‐8 membrane grains with 2‐imidazolecarboxaldehyde (ZIF‐90 linker), thereby enlarging the effective aperture size of ZIF‐8. The linker‐exchanged ZIF‐8 membranes showed a drastic increase in propylene permeance by about four times, with a negligible loss in propylene/propane separation factor when compared to as‐prepared membranes. The linker‐exchange effect depends on the membrane synthesis method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号