首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenyl radical (C6H5.) is the prototypical σ‐type aryl radical and one of the most common aromatic building blocks for larger ring molecules. Using a combination of rotational spectroscopy of singly substituted isotopic species and vibrational corrections calculated theoretically, an extremely accurate molecular structure has been determined. Relative to benzene, the phenyl radical has a substantially larger C‐Cipso‐C bond angle [125.8(3)° vs. 120°], and a shorter distance [2.713(3) Å vs. 2.783(2) Å] between the ipso and para carbon atoms.  相似文献   

2.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

3.
The crystal and molecular structures of the title compound, 3‐bromo‐3‐(di­benzyl­phenyl­phospho­nio)‐2,2‐di­phenyl‐5‐trifluoromethyl‐1H‐benzo­[e][1,2]­phosphanickelepine, [NiBr(C22H17F3P)(C20H19P)], which was obtained as the major regioisomer from insertion of HCCCF3 into the Ni—C bond of the five‐membered phosphanickelacycle [NiBr(o‐C6H4CH2PPh2‐κ2C,P){PPh(CH2Ph)2}], have been determined. Principal geometric data include the Ni—X bond lengths Ni—Br 2.3343 (4) Å, Ni—P 2.1867 (7) and 2.2094 (7) Å, and Ni—C 1.882 (3) Å, and the two trans angles P—Ni—P 171.55 (3)° and Br—Ni—C 176.88 (9)°.  相似文献   

4.
The title di­phenyl­carbene porphyrin complex (di­phenyl­carbenyl‐κC)(methanol‐κO)(5,10,15,20‐tetra‐p‐tolyl­por­phy­rin­ato‐κ4N)ruthenium(II) methanol solvate, [Ru­(C13H10)(C48H36N4)(CH4O)]·CH4O, has a six‐coordinate Ru atom with a methanol mol­ecule as the second axial ligand. The carbene fragment is slightly distorted from an ideal sp2 configuration, with a C(phenyl)—C(carbene)—C(phenyl) angle of 112.2 (3)°. The Ru—C bond length of 1.845 (3) Å is comparable with other carbene complexes. The two phenyl rings of the carbene ligand are perpendicular to the carbene plane. Methanol solvate mol­ecules link the methanol ligands of adjacent porphyrin complexes via hydrogen bonds.  相似文献   

5.
Two isomeric trans‐4‐amino­azoxy­benzenes, trans‐1‐(4‐amino­phenyl)‐2‐phenyl­diazene 2‐oxide (α, C12H11N3O) and trans‐2‐(4‐amino­phenyl)‐1‐phenyl­diazene 2‐oxide (β, C12H11N3O), have been characterized by X‐ray diffraction. The α isomer is almost planar, having torsion angles along the Caryl—N bonds of only 4.9 (2) and 8.0 (2)°. The relatively short Caryl—N bond to the non‐oxidized site of the azoxy group [1.401 (2) Å], together with the significant quinoid deformation of the respective phenyl ring, is evidence of conjugation between the aromatic sextet and the π‐electron system of the azoxy group. The geometry of the β isomer is different. The non‐substituted phenyl ring is twisted with respect to the NNO plane by ca 50°, whereas the substituted ring is almost coplanar with the NNO plane. The non‐oxidized N atom in the β isomer has increased sp3 character, which leads to a decrease in the N—N—C bond angle to 116.8 (2)°, in contrast with 120.9 (1)° for the α isomer. The deformation of the C—C—C angles (1–2°) in the phenyl rings at the substitution positions is evidence of the different character of the oxidized and non‐oxidized N atoms of the azoxy group. In the crystal structures, mol­ecules of both isomers are arranged in chains connected by weak N—H?O (α and β) and N—H?N (β) hydrogen bonds.  相似文献   

6.
The structure of the title compound, [Pt(C6H5)2(C6H12N3P)2] or [Pt(Ph)2(PTA)2] (where Ph is phenyl and PTA is 1,3,5‐tri­aza‐7‐phosphaadamantane), is discussed. Selected geom­etric parameters are: Pt—P = 2.2888 (16) and 2.2944 (17) Å, Pt—C = 2.052 (5) and 2.064 (6) Å, C—Pt—C = 84.6 (2)° and P—Pt—P = 99.28 (6)°. The effective cone angle for the PTA ligands was calculated as 113°.  相似文献   

7.
In the title compound, [Ni(C12H11N2)2], the NiII cation lies on an inversion centre and has a square‐planar coordination geometry. This transition metal complex is composed of two deprotonated N,N′‐bidentate 2‐[(phenylimino)ethyl]‐1H‐pyrrol‐1‐ide ligands around a central NiII cation, with the pyrrolide rings and imine groups lying trans to each other. The Ni—N bond lengths range from 1.894 (3) to 1.939 (2) Å and the bite angle is 83.13 (11)°. The Ni—N(pyrrolide) bond is substantially shorter than the Ni—N(imino) bond. The planes of the phenyl rings make a dihedral angle of 78.79 (9)° with respect to the central NiN4 plane. The molecules are linked into simple chains by an intermolecular C—H...π interaction involving a phenyl β‐C atom as donor. Intramolecular C—H...π interactions are also present.  相似文献   

8.
The reaction of 2‐amino‐benzothiazole with allyl bromide resulted in a mixture of 2‐imino‐3‐allyl‐benzothiazole and 2‐imino‐3‐allyl‐benzothiazolium bromide.Using such a mixture and copper(II) chloride in acetonitrile solution in alternating‐current electrochemical synthesis crystals of the [(CuCl)C10H10SN2] ( I ) have been obtained. The same procedure, performed in ethanol solution, has led to formation of [C10H11SN2+]2[Cu2Cl4]2? ( II ). In the same manner the bromine derivative [C10H11SN2+]2[Cu2Br4]2? ( III ) has been synthesized. All three compounds were X‐ray structurally investigated. I :monoclinic space group P21/n, a = 13.789(6), b = 6.297(3), c = 13.830(6) Å, β = 112.975(4)°, V = 1105.6 (9) Å3, Z = 4 for CuCl·C10H10 SN2 composition. Compounds II and III are isomorphous and crystallize in triclinic space group. II a = 7.377(3), b = 8.506(3), c = 9.998(4) Å, α = 79.892(10)°, β = 82.704(13)°, γ = 78.206(12)°, V = 601.9(4) Å3, Z = 1. III a = 7.329(2), b = 8.766(3), c = 10.265(3) Å, α = 79.253(9)°, β = 82.625(9)°, γ = 77.963(9)°, V = 630.9(3) Å3, Z = 1. In the structure I [(CuCl)C10H10SN2] building blocks are bound into infinitive spiral‐like chains via strong N‐H..Cl hydrogen bonds. In the zwitter‐ionic II and III compounds copper and halide atoms form centrosymmetric [Cu2X4]2? anions, which are interconnected via N‐H..X hydrogen bonds into infinite butterfly‐like chains. The strongest Cu‐(C=C) π‐interaction has been observed in structure I , where copper possesses coordination number 3. Increasing copper coordination number to 4 in II as well as replacing chlorine atoms by bromine ones in III suppresses markedly this interaction.  相似文献   

9.
Molecules of the title compounds N2‐(benzoyl­oxy)­benz­ami­dine, C14H12N2O2, (I), N2‐(2‐hydroxy­benzoyl­oxy)­benz­ami­dine, C14H12N2O3, (II), and N2‐benzoyloxy‐2‐hydroxybenzamidine, C14H12N2O3, (III), all have extended chain conformations, with the aryl groups remote from one another. In (I), the mol­ecules are linked into chains by a single N—H⋯N hydrogen bond [H⋯N = 2.15 Å, N⋯N = 3.029 (2) Å and N—H⋯N = 153°] and these chains are linked into sheets by means of aromatic π–π stacking interactions. There is one intramolecular O—H⋯O hydrogen bond in (II), and a combination of one three‐centre N—H⋯(N,O) hydrogen bond [H⋯N = 2.46 Å, H⋯O = 2.31 Å, N⋯N = 3.190 (2) Å, N⋯O = 3.146 (2) Å, N—H⋯N = 138° and N—H⋯O = 154°] and one two‐centre C—H⋯O hydrogen bond [H⋯O = 2.46 Å, C⋯O = 3.405 (2) Å and C—H⋯O = 173°] links the mol­ecules into sheets. In (III), an intramolecular O—H⋯N hydrogen bond and two N—H⋯O hydrogen bonds [H⋯O = 2.26 and 2.10 Å, N⋯O = 2.975 (2) and 2.954 (2) Å, and N—H⋯O = 138 and 163°] link the molecules into sheets.  相似文献   

10.
In the title compound, C13H16N22+·2C2H4O5P, the cation lies across a twofold rotation axis in space group Fdd2. The anions are linked into molecular ladders by two O—H⃛O hydrogen bonds [H⃛O = 1.73 and 1.77 Å, O⃛O = 2.538 (2) and 2.598 (3) Å, and O—H⃛O = 160 and 170°], these ladders are linked into sheets by a single type of N—H⃛O hydrogen bond [H⃛O = 1.75 Å, N⃛O = 2.624 (3) Å and N—H⃛O = 171°] and the sheets are linked into a three‐dimensional framework by a single type of C—H⃛O hydrogen bond [H⃛O = 2.48 Å, C⃛O = 3.419 (4) Å and C—H⃛O = 167°].  相似文献   

11.
In the title compound, N‐(2‐methoxy­phenyl)‐4‐nitro­benzyli­deneamine, C14H12N2O3, the two phenyl rings make a dihedral angle of 48.0 (2)° and the nitro group is at an angle of 6.5 (1)° with respect to its attached phenyl ring. In the crystal structure, mol­ecules are related as centrosymmetric pairs through π–π interactions and are further connected through strong C—H?O hydrogen bonds [C?O 3.4259 (17) Å and C—H?O 167°], forming molecular stacks along [100]. These stacks associate further through longer C—H?O interactions, forming two‐dimensional networks. In the c direction, there are only weak van der Waals interactions. The relationship between the molecular planarity and its centrosymmetry is also briefly described.  相似文献   

12.
The adduct 1,6‐di­amino­hexane–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2) is a salt {hexane‐1,6‐diyldiammonium–4‐[1,1‐bis(4‐hydroxyphenyl)ethyl]phenolate (1/2)}, C6H18N22+·2C20H17O3?, in which the cation lies across a centre of inversion in space group P. The anions are linked by two short O—H?O hydrogen bonds [H?O 1.74 and 1.76 Å, O?O 2.5702 (12) and 2.5855 (12) Å, and O—H?O 168 and 169°] into a chain containing two types of R(24) ring. Each cation is linked to four different anion chains by three N—H?O hydrogen bonds [H?O 1.76–2.06 Å, N?O 2.6749 (14)–2.9159 (14) Å and N—H?O 156–172°]. In the adduct 2,2′‐bipyridyl–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2), C10H8N2·2C20H18O3, the neutral di­amine lies across a centre of inversion in space group P21/n. The tris­(phenol) mol­ecules are linked by two O—H?O hydrogen bonds [H?O both 1.90 Å, O?O 2.7303 (14) and 2.7415 (15) Å, and O—H?O 173 and 176°] into sheets built from R(38) rings. Pairs of tris­(phenol) sheets are linked via the di­amine by means of a single O—H?N hydrogen bond [H?N 1.97 Å, O?N 2.7833 (16) Å and O—H?N 163°].  相似文献   

13.
In tris(4‐hydroxy­phenyl)­methane (or 4,4′,4′′‐methane­triyl­tri­phenol), C19H16O3, mol­ecules are connected by O—H⃛O hydrogen bonds [O⃛O = 2.662 (2) and 2.648 (2) Å] into two‐dimensional square networks that are twofold interpenetrated. In tris(4‐hydroxy­phenyl)­methane–4,4′‐bi­pyridine (1/1), C19H16O3·C10H8N2, trisphenol mol­ecules form rectangular networks via O—H⃛O [O⃛O = 2.694 (3) Å] and C—H⃛O [C⃛O = 3.384 (3) Å] hydrogen bonds. Bi­pyridine mol­ecules hydrogen bonded to phenol moieties [O⃛N = 2.622 (3) and 2.764 (3) Å] fill the voids to complete the structure.  相似文献   

14.
The title compounds, 2‐(di­methyl­amino)­bi­phenyl‐2′‐carbox­aldehyde, C15H15NO, and 2‐(di­methyl­amino)­bi­phenyl‐2′,6′‐dicarbox­aldehyde, C16H15­NO2, show similar 1,6‐interactions [N?C=O 2.929 (3) to 3.029 (3) Å] between the di­methyl­amino and aldehyde groups located in the ortho positions of the two rings, which lie at 58.1 (1)–62.4 (1)° to each other.  相似文献   

15.
In the title complex, [Au(C12H8N5O4)(C18H15P)], the coordination geometry about the AuI ion is linear, with one deprotonated 1,3‐bis(4‐nitro­phenyl)­triazenide ion, [O2NC6H4N=N–NC6H4NO2], acting as a monodentate ligand (two‐electron donor), and one neutral tri­phenyl­phosphine mol­ecule completing the metal coordination. The triazenide ligand is almost planar (r.m.s. deviation = 0.0767 Å), with the largest interplanar angle being 11.6 (7)° between the phenyl ring of one of the terminal 4‐nitro­phenyl substituents and the plane defined by the N=N—N triad. The Au—N and Au—P distances are 2.108 (5) and 2.2524 (13) Å, respectively. Pairs of mol­ecules generated by centrosymmetry are associated into a supramolecular array via intermolecular C—H⋯O inter­actions, and N⋯C and N⋯O π–π interactions.  相似文献   

16.
The crystal structure of cholesteryl 4‐[4‐(4‐n‐butylphenylethynyl)phenoxy]butanoate [phase sequence: Cr 155°C (46.1?J?g?1) SmA 186.8°C (1.5?J?g?1) TGB‐N* 204.7 (6?J?g?1) I] has been solved from single crystal X‐ray diffraction data. The compound crystallizes in the monoclinic space group P21 with unit cell parameters: a?=?13.129(2), b?=?9.3904(10), c?=?17.4121(8)?Å, β?=?92.790(7)°, Z?=?2. The structure has been solved by direct methods and refined to R?=?0.0606 for 3?250 observed reflections. The bond distances and angles are in good agreement with the corresponding values for compounds containing phenyl and cholesterol moieties. The phenyl rings A and B are planar. The dihedral angle between the least‐squares planes of the two phenyl rings is 28°. The cholesterol moiety has the usual structure: the C and E rings have chair conformations, and the D and F rings adopt half‐chair conformations. The molecules in the unit cell are arranged in an antiparallel manner. The crystal structure is stabilized by an intermolecular C–H…O contact of 2.989(10)?Å.  相似文献   

17.
The title compound, [Ru(C13H11N4S)2(C15H8N2)2], has C2 symmetry, with bidentate 2,2′‐bipyridyl ligands dictating a cis geometry around the RuII center. The monodentate S‐bonded dithizone ligands are almost planar, except for one of the phenyl rings, which is twisted by 34.2 (4)° from the N/N/C(S)/N/N plane. The Ru—S bond length is 2.4140 (13) Å, and the Ru—N bond lengths are 2.048 (4) and 2.074 (4) Å.  相似文献   

18.
The title compounds, propynylferrocene, [Fe(C5H5)(C8H7)], (I), and (phenyl­ethyn­yl)ferrocene, [Fe(C5H5)(C13H9)], (II), are stabilized by weak C—H⋯π inter­actions. The C[triple‐bond]C bond distances in these mol­ecules are in the range 1.182 (3)–1.192 (3) Å. In (II), the ferrocenyl and phenyl groups are perpendicular, making an angle of 89.06 (13)°, which is a rare occurrence.  相似文献   

19.
In the title compound, [Cd(C12H8F2N3)2(C5H5N)2], the Cd atom lies on a crystallographic twofold axis in space group Iba2. The coordination geometry about the CdII ion corresponds to a rhombically distorted octahedron, with two deprotonated 1,3‐bis(2‐fluoro­phenyl)­triazenide ions, viz. FC6H4NNNC6H4F, acting as bidentate ligands (four‐electron donors). Two neutral pyridine (py) mol­ecules complete the coordination sphere in positions cis with respect to one another. The triazenide ligand is not planar (r.m.s. deviation = 0.204 Å), the dihedral angle between the phenyl rings of the terminal 2‐fluoro­phenyl substituents being 24.6 (1)°. The triazenide and pyridine Cd—N distances are 2.3757 (18)/2.3800 (19) and 2.3461 (19) Å, respectively. Intermolecular C—H⋯F interactions generate sheets of mol­ecules in the (010) plane.  相似文献   

20.
In the title compound, C10H6N4O4S2, (I), the molecule has a centre of inversion. The structure is a positional isomer of 5,5′‐dinitro‐2,2′‐dithiodipyridine [Brito, Mundaca, Cárdenas, López‐Rodríguez & Vargas (2007). Acta Cryst. E 63 , o3351–o3352], (II). The 3‐nitropyridine fragment of (I) shows excellent agreement with the bonding geometries of (II). The most obvious differences between them are in the S—S bond length [2.1167 (12) Å in (I) and 2.0719 (11) Å in (II)], and in the C—Cipso—Nring [119.8 (2)° in (I) and 123.9 (3)° in (II)] and S—C—C [122.62 (18)° in (I) and 116.0 (2)° in (II)] angles. The crystal structure of (I) has an intramolecular C—H...O interaction, with an H...O distance of 2.40 (3) Å, whereas this kind of interaction is not evident in (II). The molecules of (I) are linked into centrosymmetric R44(30) motifs by a C—H...O interaction. There are no aromatic π–π stacking and no C—H...π(arene) interactions. Compound (I) can be used as a nucleophilic tecton in self‐assembly reactions with metal centres of varying lability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号