首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, we describe our full investigations into the synthesis of the peptide‐derived natural product plantazolicin A, a compound that demonstrates promising selective activity against the causative agent of anthrax toxicity, and its biosynthetic precursor plantazolicin B. This report particularly focuses on the challenging preparation of the arginine containing thiazole fragment, including the development of a robust, high yielding procedure that avoids the use of sulfurating agents. Extensive studies on the design of a coherent protecting group strategy and the establishment of a step‐efficient dicyclization/oxidation approach allowed high levels of convergence for the construction of the oxazole fragments. This has led to a unified, highly convergent synthesis for both plantazolicin A and B.  相似文献   

2.
The power of rhodium–carbene methodology in chemistry is demonstrated by the synthesis of a structurally complex polyazole antibiotic. Plantazolicin A, a novel soil‐bacterium metabolite, comprises a linear array of 10 five‐membered rings in two pentacyclic regions that derive from ribosomal peptide synthesis followed by extensive posttranslational modification. The compound possesses potent antimicrobial activity, and is selectively active against the anthrax‐causing organism. A conceptually different synthesis of plantazolicin A is reported in which the key steps are the use of rhodium(II)‐catalyzed reactions of diazocarbonyl compounds to generate up to six of the seven oxazole rings of the antibiotic. NMR spectroscopic studies and molecular modeling reveal a likely dynamic hairpin conformation with a hinge region around the two isoleucine residues. The compound has modest activity against methicillin‐resistant Staphylococcus aureus (MRSA).  相似文献   

3.
The first asymmetric total synthesis of the antifeedant terpenoids (+)‐norleucosceptroid A, (−)‐norleucosceptroid B, and (−)‐leucosceptroid K has been accomplished. This highly concise synthetic route was guided by our efforts to develop a platform for the collective synthesis of a whole family of antifeedant natural products. The synthesis features a Hauser–Kraus‐type annulation followed by an unprecedented, highly efficient intramolecular dilactol aldol‐type condensation reaction to produce the 5,6,5 skeleton. The developed synthetic route proceeds for norleucosceptroid A and B in 16 steps (longest linear sequence) from known compounds.  相似文献   

4.
The first asymmetric total synthesis of the antifeedant terpenoids (+)‐norleucosceptroid A, (?)‐norleucosceptroid B, and (?)‐leucosceptroid K has been accomplished. This highly concise synthetic route was guided by our efforts to develop a platform for the collective synthesis of a whole family of antifeedant natural products. The synthesis features a Hauser–Kraus‐type annulation followed by an unprecedented, highly efficient intramolecular dilactol aldol‐type condensation reaction to produce the 5,6,5 skeleton. The developed synthetic route proceeds for norleucosceptroid A and B in 16 steps (longest linear sequence) from known compounds.  相似文献   

5.
The first enantioselective synthesis of cytotoxic natural products rigidiusculamides A (ent‐ 21 ) and B ( 8 ) has been achieved by two synthetic routes. The first one is convergent based on the common intermediate 11 , obtained through a high yielding SmI2‐mediated Reformatsky‐type reaction. A highly diastereoselective one‐pot Dess–Martin periodinane‐mediated bis‐oxidation allowed the direct conversion of the diastereomeric mixture of 11 into rigidiusculamide B ( 8 ). Isolation of minor diastereomer 21 , in combination with computational work, allowed us to suggest the structure of the natural rigidiusculamide A to be 21 , as synthesized by the second route. Four diastereomers ( 7 , 7 , 22a , and 22b ) and an enantiomer ( 21 ) of rigidiusculamide A ( 21 ) have been synthesized. On the basis of literature precedents and computational work, a biosynthetic pathway for rigidiusculamides A and B was proposed to account for the opposite configuration at C‐5 of those two congeners.  相似文献   

6.
The first enantioselective total syntheses of prenylflavonoid Diels–Alder natural products (?)‐kuwanon I, (+)‐kuwanon J, (?)‐brosimone A, and (?)‐brosimone B have been accomplished from a common intermediate based on a concise synthetic strategy. Key elements of the synthesis include a biosynthesis‐inspired asymmetric Diels–Alder cycloaddition mediated by a chiral ligand/boron Lewis acid, as well as a process involving regioselective Schenck ene reaction, reduction, and dehydration to realize a biomimetic dehydrogenation for generation of the required diene precursor. Furthermore, a remarkable tandem inter‐/intramolecular asymmetric Diels–Alder cycloaddition process was applied for the synthesis of (?)‐brosimone A.  相似文献   

7.
Herein, we report the first enantioselective synthesis of dichrocephones A and B, which are cytotoxic triquinane sesquiterpenes with a dense array of stereogenic centers within a strained polycyclic environment. Key features include the application of a catalytic asymmetric Wittig reaction, followed by stereoselective functionalization of the propellane core into a pentacyclic intermediate. Double reductive ring cleavage yielded the proposed structure of dichrocephone A. Mismatched spectroscopic data for our synthetic material compared to the natural isolate led us to revise the previously proposed configuration based on biosynthetic considerations and NMR calculations. Implementation of these findings culminated in the synthesis of dichrocephones A and B.  相似文献   

8.
The first total synthesis of the ramonanin family of lignan natural products is described. The short synthesis involves a 2,5‐diaryl‐3,4‐dimethylene tetrahydrofuran intermediate, which participates in an unexpectedly facile Diels–Alder dimerization, generating all four natural products. Insights into the reactivity and stereoselectivity of the key dimerization are provided through computational studies employing B3LYP/6‐31G(d) and M06‐2X/6‐31G(d) model chemistries.  相似文献   

9.
Utilizing a late‐stage enamine bromofunctionalization strategy, the twelve‐step total synthesis of (?)‐huperzine Q was accomplished. Furthermore, the first total syntheses of (+)‐lycopladines B and C are described. An unprecedented X‐ray crystal structure of an unusual epoxyamine intermediate is also reported, and the synthetic application of this intermediate in natural product synthesis is demonstrated.  相似文献   

10.
A highly convergent strategy for the synthesis of the natural product (?)‐rubriflordilactone B, and the proposed structure of (?)‐pseudo‐rubriflordilactone B, is described. Late stage coupling of diynes containing the respective natural product FG rings with a common AB ring aldehyde precedes rhodium‐catalyzed [2+2+2] alkyne cyclotrimerization to form the natural product skeleton, with the syntheses completed in just one further operation. This work resolves the uncertainty surrounding the identity of pseudo‐rubriflordilactone B and provides a robust platform for further synthetic and biological investigations.  相似文献   

11.
The rhytidenone family comprises spirobisnaphthalene natural products isolated from the mangrove endophytic fungus Rhytidhysteron rufulum AS21B. The biomimetic synthesis of rhytidenone A was achieved by a Michael reaction/aldol/lactonization cascade in a single step from the proposed biosynthetic precursor rhytidenone F. Moreover, the mode of action of the highly cytotoxic rhytidenone F was investigated. The pulldown assay coupled with mass spectrometry analysis revealed the target protein PA28γ is covalently attached to rhytidenone F at the Cys92 residue. The interactions of rhytidenone F with PA28γ lead to the accumulation of p53, which is an essential tumor suppressor in humans. Consequently, the Fas‐dependent signaling pathway is activated to initiate cellular apoptosis. These studies have identified the first small‐molecule inhibitor targeting PA28γ, suggesting rhytidenone F may serve as a promising natural product lead for future anticancer drug development.  相似文献   

12.
The first asymmetric total synthesis of (?)‐ophiodilactone A and (?)‐ophiodilactone B, isolated from the ophiuroid (Ophiocoma scolopendrina), is reported. The key features of the synthesis include the highly stereocontrolled construction of the structurally congested γ‐lactone/δ‐lactone skeleton through an asymmetric epoxidation, diastereoselective iodolactonization, and intramolecular epoxide‐opening with a carboxylic acid, and biomimetic radical cyclization of ophiodilactone A to ophiodilactone B.  相似文献   

13.
A concise and highly enantioselective synthesis of the flavonoids brosimine A, brosimine B, and brosimacutin L is reported for the first time. The key transformation is a single‐step conversion of a flavanone into a flavan by means of an asymmetric transfer hydrogenation/deoxygenation cascade.  相似文献   

14.
The first and enantioselective total synthesis of (+)‐plumisclerin A, a novel unique complex cytotoxic marine diterpenoid, has been accomplished. Around the central cyclopentane anchorage, a sequential ring‐formation protocol was adopted to generate the characteristic tricycle[4.3.1.01,5]decane and trans‐fused dihyrdopyran moiety. Scalable enantioselective LaIII‐catalyzed Michael reaction, palladium(0)‐catalyzed carbonylation and SmI2‐mediated radical conjugate addition were successfully applied in the synthesis, affording multiple grams of the complex and rigid B/C/D‐ring system having six continuous stereogenic centers and two all‐carbon quaternary centers. The trans‐fused dihyrdopyran moiety with an exo side‐chain was furnished in final stage through sequential redox transformations from a lactone precursor, which overcome the largish steric strain of the dense multiring system. The reported total synthesis also confirms the absolute chemistries of natural (+)‐plumisclerin A.  相似文献   

15.
Leucosceptroids A and B are sesterterpenoids with potent antifeedant and antifungal activities. A more efficient gram‐scale total synthesis of leucosceptroid B and the first total synthesis of leucosceptroid A are presented. The key transformations include an aldol reaction between a substituted dihydrofuranone and an (S)‐citronellal‐derived aldehyde, a SmI2‐mediated intramolecular ketyl–olefin radical cyclization, and final‐stage alcohol oxidation.  相似文献   

16.
The first total syntheses of the bioactive cyclodepsipeptides ohmyungsamycin A and B are described. Key features of our synthesis include the concise preparation of a linear cyclization precursor that consists of N‐methyl amides and non‐proteinogenic amino acids, and its macrolactamization from a bent conformation. The proposed structure of ohmyungsamycin B was revised based on its synthesis. The cyclic core of the ohmyungsamycins was shown to be responsible for the excellent antituberculosis activity, and ohmyungsamycin variants with truncated chains were evaluated for their biological activity.  相似文献   

17.
Ovafolinins A and B, isolated from Lyonia ovalifolia var. elliptica, are lignans that contain a unique bridged structure containing a penta‐ and tetracyclic benzoxepin and an aryl tetralin. We report the first total synthesis of these natural products in which an acyl‐Claisen rearrangement was initially utilized to construct the lignan backbone with correct relative stereochemistry. Judicious use of a bulky protecting group placed reactive moieties in the correct orientation, thereby resulting in a cascade reaction to form the bridged benzoxepin/aryl tetralin from a linear precursor in a single step. Modification of this route allowed the enantioselective synthesis of (+)‐ovafolinins A and B, which confirmed the absolute stereochemistry, and comparison of optical rotation suggests that these compounds are found as scalemic mixtures in nature.  相似文献   

18.
A divergent total synthesis of three structurally distinct natural products from imine 9 was accomplished through an approach featuring: 1) a Pd‐catalyzed decarboxylative cross‐coupling, and 2) heteroannulation of 9 with bromoacetaldehyde and oxalyl chloride to give tetrahydroindolizine 6 and dioxopyrrole 7 , respectively. The former was converted into (?)‐rhazinilam, while the latter was converted into (?)‐leucomidine B and (+)‐leuconodine F. A substrate‐directed highly diastereoselective reduction of a sterically unbiased double bond by using a homogeneous palladium catalyst was developed. A self‐induced diastereomeric anisochronism (SIDA) phenomenon was observed for leucomidine B.  相似文献   

19.
A divergent total synthesis of three structurally distinct natural products from imine 9 was accomplished through an approach featuring: 1) a Pd‐catalyzed decarboxylative cross‐coupling, and 2) heteroannulation of 9 with bromoacetaldehyde and oxalyl chloride to give tetrahydroindolizine 6 and dioxopyrrole 7 , respectively. The former was converted into (−)‐rhazinilam, while the latter was converted into (−)‐leucomidine B and (+)‐leuconodine F. A substrate‐directed highly diastereoselective reduction of a sterically unbiased double bond by using a homogeneous palladium catalyst was developed. A self‐induced diastereomeric anisochronism (SIDA) phenomenon was observed for leucomidine B.  相似文献   

20.
A five‐step total synthesis of the marine natural product synoxazolidinone A was achieved through a diastereoselective imine acylation/cyclization cascade. Synoxazolidinone B and a series of analogues were also prepared to explore the potential of these 4‐oxazolidinone natural products as antimicrobial agents. These studies confirmed the importance of the chlorine substituent for antimicrobial activity and revealed simplified dichloro derivatives that are equally potent against several bacterial strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号